DEPARTMENT OF MATHEMATICS UNIVERSITY OF KANSAS
 MATH 220 - EXAM 2

Your Name:

\qquad
On this exam, you may use a calculator and the book.
It is not sufficient to just write down the answers. You
must explain how you arrived at your answers and how you know they are correct.

1	(30)
2	(30)
3	(30)
4	(30)
5	(30)
6	(30)
Total	-

- (30 points) Solve the initial value problem, sketch the graph of the solution and describe its behavior for increasing t .

$$
\begin{aligned}
& y^{\prime \prime}+4 y^{\prime}+5 y=0 \\
& y(0)=1, y^{\prime}(0)=0
\end{aligned}
$$

- (30 points) Find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=3 t e^{2 t} .
$$

- (30 points) A mass weighing 2 lb stretches a spring 6 in . If the mass is pulled down an additional 3 in . and then released, and if there is no damping, determine the position u of the mass at any time t. Draw the graph of $u(t)$, find the frequency, period and amplitute of the motion.
- (30 points) Find the solution to

$$
\begin{aligned}
& 2 y^{\prime \prime}-3 y^{\prime}+y=0 \\
& y(0)=2 \\
& y^{\prime}(0)=1 / 2
\end{aligned}
$$

- (30 points) Use the method of undetermined coefficients to find a particular solution of

$$
y^{\prime \prime}-6 y^{\prime}+8 y=x+e^{2 x} .
$$

Find the general solution of this equation.

- (30 points) Bonus Problem An 2-pound weight stretches a spring 6 inches. Suppose the weight is released from the equilibrium position with the upward speed $16 \mathrm{ft} / \mathrm{s}$. Find the motion of the spring-mass system if it is driven by an external force $f(t)=7 \cos t$. Is the motion a periodic one? If so, what is the period? (The gravitation constant $g=32 \mathrm{ft} / s^{2}$ and 1 foot $=12 \mathrm{in}$.)

