# DEPARTMENT OF MATHEMATICS <br> UNIVERSITY OF KANSAS <br> Math 221 Sample EXAM 2 

## Your Name:

$\qquad$
On this exam, you may use a calculator and the book.
It is not sufficient to just write down the answers. You must explain how you arrived at your answers and how you know they are correct.

| 1 | $(40)$ |
| :--- | ---: |
| 2 | $(40)$ |
| 3 | $(40)$ |
| 4 | $(40)$ |
| 5 | $(40)$ |
| Total | $\square$ |

- (40 points) Find the solution of the initial value problem using the Laplace transform.

$$
\left\lvert\, \begin{aligned}
& y^{\prime \prime}-y^{\prime}-2 y=0 \\
& y(0)=1, y^{\prime}(0)=1
\end{aligned}\right.
$$

- (40 points) Find the inverse Laplace transform of the function

$$
F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2} .
$$

- (40 points) Find the solution of the initial value problem and describe its behavior for increasing t . Use Laplace transform.

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+5 y=1-u_{10}(t) \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

- (40 points) Find the solutions of the linear system and sketch the phase portrait.

$$
x^{\prime}=\left(\begin{array}{ll}
1 & -5 \\
1 & -3
\end{array}\right) x, \quad x(0)=\binom{1}{1}
$$

- (40 points) Find the general solution of the linear system

$$
x^{\prime}=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & -1 \\
-8 & -5 & -3
\end{array}\right) x
$$

