DEPARTMENT OF MATHEMATICS
 UNIVERSITY OF KANSAS
 MATH 220-FALL 2010-EXAM 1

Your Name:

\qquad
On this exam, you may use a calculator and one page with formulas. It is not sufficient to just write down the answers. You must show your work to get full credit.

- Problem 1

Solve the initial value problem explicitly and sketch the graph of the solution

$$
\begin{aligned}
& y^{\prime}=\frac{-x}{1+y} \\
& y(0)=1
\end{aligned}
$$

What is the domain of the solution?

- Problem 2

Solve the equation implicitly

$$
\left(3 x^{2}+y^{2}\right)+\left(2 x y-6 y^{2}\right) y^{\prime}=0
$$

- Problem 3 Find the solution of the given initial value problem and describe the behavior of the solution for large t.

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0, \quad y(\pi / 2)=0, \quad y^{\prime}(\pi / 2)=2
$$

Describe the behavior of the solution as $t \rightarrow \infty$.

- Problem 4 Solve the initial-value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=2 t, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

- Problem 5

Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of $1 \mathrm{~g} / \mathrm{L}$. To prepare for the next experiment, the tank is to be rinsed with fresh water flowing in a rate of $2 \mathrm{~L} / \mathrm{min}$, the well-stirred solution flowing out at the same rate. Find the time that will elapse before the concentration of dye in the tank reaches 1% of its original value.

- Extra Credit Problem (20 points) Solve the initial-value problem with a parameter b.

$$
y^{\prime \prime}-y^{\prime}+0.25 y=0, \quad y(0)=2, \quad y^{\prime}(0)=b
$$

Find the critical value of b that separates solutions that always remain positive from those that eventually become negative.

