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Abstract
We study time decay of the energy for the one dimensional damped Klein-Gordon
equation. We give an explicit necessary and sufficient condition on the continuous
damping function γ ≥ 0 for which the energy

E(t) =
∫ ∞

−∞
|ux |2 + |u|2 + |ut |2dx

decays, whenever (u(0), ut (0)) ∈ H2(R) × H1(R).

Mathematics Subject Classification 35B35 · 35B40 · 35G30

1 Introduction

The main object of study is the following damped Klein-Gordon equation

utt + γ (x)ut − uxx + u = 0. (x, t) ∈ R × R (1)
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where γ (x)ut represents a damping force proportional to the velocity ut . This is a
standard model in the theory. In the case γ (x) = const ., one can easily see that the
energy function

E(u) =
∫ ∞

−∞
|ux |2 + |u|2 + |ut |2dx,

has an exponential decay as t → ∞. Thus a natural question to ask is the following:
under what conditions on γ (x) ≥ 0, one can still guarantee such exponential (or
slower algebraic) decay. This question was intensely researched in the last ten years.
We present a brief (and definitely incomplete) overview of the recent results.

In this direction, Burq and Joly have recently proved in [6] exponential rate of
decay of the semigroup under the geometric control condition (GCC) in a sense that
there exist T , ε > 0, such that

∫ T
0 γ (x(t))dt ≥ ε along every straight line unit speed

trajectory thus extending the previous work of Bardos, Lebeau, Rauch, and Taylor
[2,3,14] of compact manifold to the whole space R

N. Notice that in [6] the authors
also require additional uniform continuity requirement on the damping coefficient γ in
order to use pseudo-differential calculus. The authors also provide counter examples
[6](see fig 1c) where exponential decay is expected but regularity hypothesis of GCC
failed badly.However this is not in the case of compactmanifoldwhere this assumption
is automatically true.

In the absence of geometric control condition, the same authors of [6] also provide
a weaker hypothesis, namely network control condition where the damping coefficient
γ (x) is strictly positive on a family of balls whose dilates cover R

N under which the
solution of damped wave equation decays with logarithmic rate (still without loss of
regularity). For a fixed periodic damping, Wunsch proved in [16] that without any
geometric condition there is at least a polynomial (certainly not optimal) decay (with
loss of regularity).

One can observe that in the case of compactmanifold (see [1,5,12,15] and references
therein) the decay rate of the semigroup of damped wave equation highly depends
on the way the damping coefficient γ vanishes. Several sharp result are obtained in
different settings. One should expect the same in the case of non compact setting.
However, it is not clear in this case what is the optimal form of a damping coefficient
which will ensure that one can expect exponential (or algebraic) energy decay to the
solution of (1). The purpose of this paper is to find optimal conditions on the damping
coefficient γ under which the exponential decay holds. In fact, we are able to provide
a simple to verify necessary and sufficient condition for such an exponential decay.

1.1 Semigroup representations and some previous results

We begin by recasting (1) as an abstract Cauchy problem. Define U = (u, ut )�, then
Eq. (1) can be written as a dynamical system in the following form

Ut = AU , A =
(

0 I
∂2x − 1 −γ (x)

)
(2)
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The operator A is defined on a Hilbert space H = H1(R) × L2(R), with domain
H2(R) × H1(R). It is well-known that if the damping γ ≥ 0 is bounded, this defines
a semigroup T (t) (see [11]). In fact, T (t) is a semigroup of contractions.

The following is the main result of the article.

Theorem 1 Assume γ : R → R, with γ ≥ 0 is a continuous and bounded function.
The following statements are equivalent

(i)

lim inf
N→∞ inf

y∈R

1

N

∫ y+N

y
γ (z)dz > 0. (3)

(ii) 1 ∈ ρ(A) and there exists λ0 > 0, so that

‖etA(1 − A)−1‖H1×L2→H1×L2 ≤ Ce−λ0t .

Equivalently,

‖(u(t), ut (t))‖H1×L2 ≤ Ce−λ0t‖(u(0), ut (0))‖H2×H1

whenever (u(0), ut (0)) ∈ H2 × H1.
(iii) limt→∞ ‖etA‖H2×H1→H1×L2 = 0.
(iv) For the semigroup generated by (1), σ(A) ∩ iR = ∅.
The proof of Theorem (1) is based on the semigroup technique used in [5,8,10,16],

in which rather than estimating the norm of the solution directly, we use a result
obtained byGearhart–Prüss, [7,13].We use Theorem2which is a formulation given by
Theorem 3 of [9] .More concretely, this result makes it possible to deduce exponential
rate of decay of the energy of the solution by uniformly estimating the norm of the
resolvent (A− λI )−1 of the generator of the semigroup on the imaginary axis. Some
additional remarks are in order.

Remark 1. The condition (3), in the context of γ bounded is equivalent to

lim inf
N→∞ inf

y∈R

1

N

∫ y+N

y
γ p(z)dz > 0

for any p > 1. This is a consequence of the Hölder’s inequality

1

N

∫ y+N

y
γ (z)dz ≤

(
1

N

∫ y+N

y
γ p(z)dz

) 1
p

≤ ‖γ ‖
p−1
p

L∞

(
1

N

∫ y+N

y
γ (z)dz

) 1
p

2. The implication (i) ⇒ (i i) above is of course trivial. The equivalence, namely the
fact that (i i i) ⇒ (i i), means that as long as a solution starting with an initial data
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in H2 × H1 goes to zero in the energy norm H1 × L2, then this convergence must
be exponential. In particular, this implies that algebraic convergence is impossible.
However, exponential convergence is possible. This is of course in sharp contrast
with the higher dimensional case, where algebraic convergence is possible [6,16].

3. The equivalence (i i i) ⇔ (iv) is a particular case for the bounded semigroup1 of
the damped wave equation (1), of a more general theorem of Batty–Borichev–
Tomilov, [4], Theorem 1.4 . See Theorem 3 below as well as the Corollary 2.
The paper is set out as follows. In Sect. 2 we show that our problem is well posed in

the sense ofC0-semigroups andwedescribe the spectrumof the infinitesimal generator.
In Sect. 3 we turn to compute the resolvent bound of the semigroup. The method we
use here to find the resolvent bound is very functional analytical. However, this is the
most technical part of the paper. At the end of the section, we apply the Gearhart–Prüss
Theorem 2 to deduce from the resolvent bound an estimate for the rate of energy decay
of smooth solutions.

2 Preliminaries and Notations

In order to fix notations, the Fourier transform will henceforth take the form

f̂ (ξ) =
∫

R

f (x)e−i xξdx, f (x) = (2π)−1
∫

R

f̂ (ξ)eixξdξ.

Henceforth, the constant C will change from line to line , but will always be inde-
pendent of the spectral parameter. The constants Cδ and Cε are different constant
with dependence on δ and ε respectably. These constants also will change line to line
throughout the presentation.

Proposition 1 Let γ ≥ 0 be a bounded function. Then, we have

‖T (t)‖H→H ≤ 1 ∀ t ≥ 0.

Proof All we need for the proof is to take a sufficiently smooth and decaying initial
data for (1), consider its solution at a later time and take a dot product with ut ∈ L2(R).
We obtain,

∂t (|ut‖2L2 + ‖u‖2L2 + ‖ux‖2L2) +
∫

γ |ut |2dx = 0.

It follows that the energy function E(t) = ‖ut (t)‖2L2 + ‖u(t)‖2
L2 + ‖ux (t)‖2L2

is decaying with time, hence E(t) ≤ E(0), or equivalently ‖(u(t), ut (t))‖H ≤
‖(u(0), ut (0))‖H. ��

Next, we have the following interesting corollary.

1 See Proposition 1.
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Corollary 1 Let γ ≥ 0 be a continuous function, so that (3) does not hold. That is

lim inf
N→∞ inf

y∈R

1

N

∫ y+N

y
γ (z)dz = 0

Then, ‖etA‖H1×L2→H1×L2 = 1, for all t ≥ 0.

Proof By Proposition 1, for T (t) = etA, we have

‖T (t)‖H1×L2→H1×L2 ≤ 1

and T (0) = I d. Clearly ‖T (0)‖ = 1. Assume for a contradiction, that for some
t0 > 0,

‖T (t0)‖H1×L2→H1×L2 = q < 1.

From the equivalent condition (i i i) of Theorem 1 above, it follows that

lim sup
t→∞

‖T (t)(1 − A)−1‖H1×L2→H1×L2 ≥ c0 > 0.

Say, tn → ∞, so that

‖T (tn)(1 − A)−1‖H1×L2→H1×L2 ≥ c0
2

.

Now,

c0
2

≤ ‖T (tn)(1 − A)−1‖H1×L2→H1×L2

≤ ‖T (tn)‖H1×L2→H1×L2‖(1 − A)−1‖H1×L2→H1×L2

≤ q
[ tnt0 ]‖(1 − A)−1‖H1×L2→H1×L2 .

Since clearly, limn q
[ tnt0 ] = 0, this is a contradiction. ��

The following result will be one of the main technical tools that allows us to deduce
exponential decay from estimates on the resolvent.

Theorem 2 (Gearhart–Prüss) Let etA be a C0-semigroup in a Hilbert space X and
assume that there exists a positive constant M > 0 such that ‖etA‖ ≤ M for all
t ≥ 0. Let μ ∈ ρ(A), then the following are equivalent.

(i) There exists λ0 > 0 and C, so that

‖T (t)(μ − A)−1‖B(X) ≤ Ce−λ0t
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(ii) iR ⊂ ρ(A) and

sup
s∈R

‖(A − is I )−1‖B(X) < +∞.

Another result, which will be useful for us is the following.

Theorem 3 (Batty–Borichev–Tomilov, [4], Theorem 1.4) Let etA be a bounded C0-
semigroup in a Banach space X. Then for μ ∈ ρ(A), the following are equivalent

(i) σ(A) ∩ iR = ∅
(ii) limt→∞ ‖T (t)(μ − A)−1‖B(X) = 0.

Note that in the case of the damped wave equation semigroup (2), say with μ = 1,
(1 − A)−1 : H1 × L2 → H2 × H1 and this map is onto. Thus, an application of
Theorem 3 to this particular case yields the following.

Corollary 2 For the semigroup T (t) of damped wave Eq. (2), the following are equiv-
alent

(i) σ(A) ∩ iR = ∅
(ii) limt→∞ ‖T (t)‖H2×H1→H1×L2 = 0.

2.1 Spectrum ofA

We begin by (formally) computing the resolvent of the operator A as follows: Let
u = (u1, u2)� and f = ( f1, f2)� then (is I − A)u = f is equivalent to

isu1 − u2 = f1
(−∂2x + 1)u1 + (is + γ (x))u2 = f2

or

u1 = (−∂2x + 1 + isγ (x) − s2)−1 ((is + γ (x)) f1 + f2)

u2 = (−∂2x + 1 + isγ (x) − s2)−1
(
is f2 − (−∂2x + 1) f1

)

Hence, if we introduce the resolvent operator R(is) := (−∂2x + 1+ isγ (x) − s2)−1,
then resolvent operator of A is denoted by R(is,A) and is given by

R(is,A) =
(

R(is)(is + γ (x)) R(is)
R(is)(is)(γ (x) + is) − I R(is)(is)

)
. (4)

From this, we see that in order to study R(is,A) it suffices to understand R(is). In
fact, by inspecting the form of the resolvent (4) in a way similar to [16], we have the
following.

Lemma 1 The following are equivalent
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(i) is ∈ ρ(A)

(ii) 0 ∈ ρ(−∂2x + 1 + isγ (x) − s2), that is

R(is) = (−∂2x + 1 + isγ (x) − s2)−1 : L2 → H2.

In fact, (is) is an eigenvalue of A if and only if 0 is an eigenvalue of As :=
(−∂2x + 1 + isγ (x) − s2).

Note: In this lemma, we consider s fixed. In particular, we are not concerned with
the behavior of the various norms as |s| → ∞. This is a much more subtle issue, that
we will deal with later.

According to Lemma 1, the set σ(A) ∩ iR can be characterized as those is, s ∈ R,
for which there exists gn ∈ H2(R) with ‖gn‖H2 = 1, so that

lim
n

‖Asgn‖L2 = 0.

The purely imaginary spectrum σ(A) ∩ iR (if any!), naturally consists of two
subsets—eigenvalues and the rest, which we call essential spectrum.2 Namely, is
is an eigenvalue, if there exists gs �= 0, gs ∈ H2(R), so that Asgs = 0.

Proposition 2 Let γ ≥ 0, γ �= 0 be a continuous function. Then,

(i) A has no purely imaginary eigenvalues.
(ii) i ∈ σ(A) if and only if σ(A) ⊇ {iλ, λ ∈ R : |λ| ≥ 1}.
Finally, if there is δ > 0, so that γ (x) ≥ δ > 0, then σ(A) ∩ iR = ∅.
Proof We show that there are no eigenvalues. First, we rule out the case s = 0. For
s = 0, by Lemma 1, 0 will be an eigenvalue of (−∂2x + 1). If so, there exist g �= 0
such that (−∂2x +1)g = 0, which is impossible. Take a dot product with g to conclude
‖g′‖2

L2 + ‖g‖2
L2 = 0 or g = 0.

Next, assume that s �= 0 and there is an eigenvalue is of A. Again by Lemma 1,
0 will be an eigenvalue of (−∂2x + 1 + isγ − s2). Let f = f1 + i f2, f �= 0 be the
corresponding eigenfunction of eigenvalue 0. Then, taking real and imaginary part of
the equation (−∂2x + 1 + isγ − s2) f = 0, we obtain

∣∣∣∣ (−∂2x + (1 − s2)) f1 − sγ f2 = 0,
(−∂2x + (1 − s2)) f2 + sγ f1 = 0.

Taking dot products with f2 and f1 respectively and subtracting, we obtain

∫
R

γ (x)( f 21 + f 22 )dx = 0. (5)

2 Here, we depart from the usual definition, where eigenvalues of infinite multiplicities are considered as
part of the essential spectrum. We will see though, that since eigenvalues do not appear in our setup, at least
on the important set σ(A) ∩ iR, this is not consequential.
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Recall γ ≥ 0. Since γ �= 0, let (a, b) be an interval on which γ (x) > 0. Then,
(5) implies that f1(x) = f2(x) = 0 for x ∈ (a, b). By the uniqueness theorem for
second order ODE’s, f1 = f2 = 0 for the intervals (−∞, a), (b,∞), so f1 = f2 = 0,
contradiction.

Clearly, if σ(A) ⊇ {iλ, λ ∈ R : |λ| ≥ 1}, it follows that i ∈ σ(A). Now, assume
that i ∈ σ(A). It follows that for a sequence gn with ‖gn‖H2 = 1, we have

(−∂2x + iγ )gn = fn,

where ‖ fn‖L2 → 0. Taking dot product with gn and then imaginary part yields

0 ≤
∫

γ |gn|2 = �〈 fn, gn〉 ≤ ‖ fn‖L2‖gn‖L2 → 0.

It follows that ‖√γ gn‖2L2 = ∫
γ |gn|2 → 0. Let f̃n := fn − iγ gn . Clearly, ‖ f̃n‖L2 →

0 and −g′′
n = f̃n . Note that since ‖g′′

n‖L2 = ‖ f̃n‖L2 → 0, we have

1 = ‖gn‖H2 ∼ ‖g′′
n‖L2 + ‖gn‖L2 ,

whence lim infn ‖gn‖L2 > 0.
Now, let s ∈ R such that |s| > 1. Consider μ := √

s2 − 1 > 0. Introduce un :=
eiμx gn , so lim infn ‖un‖L2 = lim infn ‖gn‖L2 > 0. Compute

Asun = (−∂2x + isγ − μ2)(gne
iμx ) = eiμx (−g′′

n − 2iμg′
n + isγ gn)

We have

‖Asun‖L2 ≤ ‖g′′
n‖L2 + 2μ‖g′

n‖L2 + |s|‖γ gn‖L2

Since all of the quantities on the right were shown to converge to zero, it follows that
limn ‖Asun‖L2 = 0, while lim infn ‖un‖L2 > 0. Thus, is ∈ σ(A) for all s ∈ R such
that |s| > 1.

For the last part, assume that γ (x) ≥ δ and yet is is in σ(A). We saw s = 0 is not
an option. So, s �= 0. That is

(−∂2x + 1 − s2 + isγ )gn = fn . (6)

Taking dot product with gn and then imaginary parts yields

|s|
∫

γ |gn|2dx ≤ |〈 fn, gn〉| ≤ ‖ fn‖‖gn‖.

It follows that

δ|s|
∫

|gn|2dx ≤ ‖ fn‖‖gn‖ → 0,
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so ‖gn‖ → 0. But from the Eq. (6),

‖g′′
n‖L2 ≤ C(|s2 − 1|‖gn‖ + ‖gn‖ + ‖ fn‖) → 0.

So, it follows that ‖gn‖H2 → 0, a contradiction. ��

We now provide a sufficient condition for σ(A) ∩ iR �= ∅, which turns out, in a
roundabout way, to be necessary as well.

Proposition 3 Let γ ≥ 0 be a bounded and continuous function, not identically zero.
Assume that (3) does not hold, that is

lim inf
N→∞ inf

y∈R

1

N

∫ y+N

y
γ (z)dz = 0. (7)

Then, σ(A) ⊇ {iλ, λ ∈ R : |λ| ≥ 1}.

Proof By Proposition 2, it suffices to check that i ∈ σ(A). It will be an element of the
essential spectrum, since as we have shown there are no eigenvalues. By (7), we can
find a sequences y j ∈ R, N j → ∞, so that

lim
j

1

N j

∫ y j+N j

y j
γ (z)dz = 0.

Consider Ψ �= 0 ∈ C∞
0 (R) with 0 ≤ Ψ (z) ≤ 1, so that Ψ (z) = 0 for z < 0 and

Ψ (z) = 0, z > 1. Let ε j := N−1
j → 0 and take u j so that

u j (x) := √
ε jΨ (ε j (x − y j )).

Clearly, ‖u′′
j‖L2 → 0, while ‖u j‖L2 = ‖Ψ ‖L2 = O(1).

Recall As = (−∂2x + 1 + isγ − s2). We compute the norm of As for s = 1 as
follows

‖A1(u j )‖L2 = ‖(−∂2x + iγ )u j‖L2 ≤ C(‖u′′
j‖L2 + ‖γ u j‖L2).

We have already seen ‖u′′
j‖L2 → 0. For the other term,

‖γ u j‖2L2 ≤ ‖γ ‖L∞ε j

∫
γ (x)|Ψ (ε j (x − y j ))|2dx ≤ ‖γ ‖L∞

1

N j

∫ y j+N j

y j
γ (z)dz.

It follows that lim j ‖γ u j‖L2 = 0, whence Proposition 3 is established. ��
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2.2 The analysis of control hypothesis

Let us analyze (3) in a more quantitative way. It means that there exists κγ and Nγ ,
so that for all N > Nγ and for all y ∈ R, we have

1

N

∫ y+N

y
γ (z)dz ≥ κγ . (8)

We have the following technical lemma, which will be useful later on.

Lemma 2 Let γ̃ ≥ γ ≥ 0 are continuous functions, so that γ satisfies (8). Then, for
every x, y ∈ R

exp

(
−

∫ max(x,y)

min(x,y)
γ̃ (z)dz

)
≤ e2Nγ κγ e−κγ |x−y|. (9)

Proof Consider the case 0 ≤ x < y. Clearly, the case x < y < 0 follows by symmetry
and then the case x < 0 < y follows by applying the previous two cases to x < 0 = y
and 0 = x < y.

We bound
∫ y
x γ̃ (z)dz ≥ 0, if y − x < Nγ . When y − x ≥ Nγ , we have by (8),

∫ y

x
γ̃ (z)dz ≥ κγ (y − x).

Overall,

exp

(
−

∫ max(x,y)

min(x,y)
γ̃ (z)dz

)
≤

{
1 y − x < Nγ

exp(−κγ (y − x)) y − x ≥ Nγ

≤ eNγ κγ e−κγ (y−x).

��

3 Proof of Theorem 1

We stat with a technical result that gives bounds for the resolvent, under the appropriate
condition (3). For all practical purposes, this is essentially the implication (i) ⇒ (i i)
of Theorem1. For technical reasons, however, wewill need to assume (as a preliminary
step) that the spectrum does not intersect the imaginary access, that is σ(A)∩ iR = ∅,
so that the various quantities are well-defined. We remove this assumption later—in
fact, we show, in a roundabout way, that indeed the property σ(A) ∩ iR = ∅ follows
from (3) alone.
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3.1 Themain technical step

Proposition 4 Let γ (x) ≥ 0 is a positive, continuous function, which satisfies (3) or
equivalently (9). In addition, assume that σ(A) ∩ iR = ∅. Accordingly, let s ∈ R,
f ∈ L2(R) and u ∈ L2(R) satisfy the resolvent equation

(−∂2x + 1 + isγ (x) − s2)u = f . (10)

Then, for every δ > 0, there is a constant Cδ,κ,N , so that for all s ∈ R such that
|s|2 ∈ [0, 1 − δ) ∪ (1 + δ,∞), we have

‖u‖L2(R) ≤ Cδ,κ,N

1 + |s| ‖ f ‖L2(R), (11)

where κ, N 3 are the quantitative bounds of γ from (8).

Proof We begin by pairing the Eq. (10) with u and taking the real part, we obtain by
using Cauchy-Schwartz, for s2 < 1 − δ

‖u′‖2L2 + (1 − s2)‖u‖2L2 = �〈 f , u〉 ≤ Cs‖ f ‖2L2(R)
+ 1 − s2

2
‖u‖2L2 .

It follows that

‖u‖2H1(R)
≤ Cδ‖ f ‖2L2(R)

,

Note that from this proof, the constant Cδ may blow up as δ → 0.
We now consider the case |s|2 ≥ 1+ δ. We assume that s is positive since the case

for negative s can be obtained by changing s to −s.
Let 0 < ε << 1 be small enough, to be selected later andμs := √

s2 − 1 ≥ √
δ >

0. We have cδ|s| ≤ μs ≤ Cδ|s|. Henceforth, all constants will implicitly depend on δ,
but we will omit this dependence.

Introduce the operators P∼s , P∼−s and P∼(s,−s) through Fourier transform:

P̂∼s( f )(ξ) = f̂ (ξ) ψ

(
ξ − μs

ε

)

̂P∼(−s)( f )(ξ) = f̂ (ξ) ψ

(
ξ + μs

ε

)
,

P�(s,−s)( f )(ξ) = (I d − P∼s − P∼(−s)) f .

Here ψ ∈ C∞
0 (R) is an even function,

ψ(z) = 1 for |z| < 1 and ψ(z) = 0, |z| > 2.

3 The constants N and κ have subscript γ , however we will remove this in the rest of the presentation.
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Further, we use the notation

P∼su(x) := u∼s(x), P�su(x) := u�s(x), P�(s,−s)(u(x)) := u�(s,−s)(x).

We will prove the proposition by projecting the Eq. (10) into the three regions for s
using the above projections and estimating the norm of u on each.

Taking dot product of (10) with u and using the imaginary parts and Cauchy-
Schwartz’s inequality yields the following estimates

s
∫

R

γ (x)|u|2dx ≤ ‖ f ‖L2(R)‖u‖L2(R).

Thus, we can conclude

‖√γ u‖L2 ≤ ε‖u‖L2 + Cε

‖ f ‖
s

(12)

where Cε is a constant which depends on ε.
Part I: apply P�(s,−s) on both sides of the Eq. (10) to get

(−∂2x )u�(s,−s)(x) − μ2
s u�(s,−s)(x) = −is(γ u)�(s,−s)(x) + f�(s,−s)(x).

Using Fourier transform and the fact that ξ is away from μs and −μs , we get

û�(s,−s)(ξ) = −is

(ξ2 − μ2
s )

(
(̂γ u)�(s,−s)(ξ)

)
+ 1

ξ2 − μ2
s
f̂�(s,−s)(ξ).

On the support of û�(s,−s)(ξ), we clearly have | −is
(ξ2−μ2

s )
| ≤ C , for some constant C .

This gives the following estimate,

‖u�(s,−s)‖L2 ≤ C

(
‖(γ u)�(s,−s)‖L2 + ‖ f�(s,−s)‖L2

s

)
≤ C

(
‖γ u‖L2 + ‖ f ‖L2

s

)

Then by (12), together with the fact that γ ≤ C
√

γ a.e, we get

‖u�(s,−s)‖L2 ≤ ε‖u‖L2 + Cε

‖ f ‖L2

s
. (13)

Part II: apply P∼s on both sides of the Eq. (10). Adding and subtracting iμsγ u∼s(x)
we get

−∂2x u∼s(x) + iμsγ (x)u∼s(x) − μ2
s u∼s(x) = f∼s(x) − is(γ u)∼s(x) + iμsγ u∼s(x)

Let f = eiμs x F and u = eiμs xU and observe that P∼s(eiμs x g) = eiμs x P∼1(g). We
get
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−∂2xU∼1(x) − 2iμs
d

dx
U∼1(x) + iμsγU∼1(x)

= F∼1(x) − is(γU )∼1 + iμsγU∼1(x).

Hence, dividing by −2iμs ,

d

dx
(U∼1(x)) − γ (x)

2
U∼1(x) = i

2μs
∂2xU∼1(x) + i

2μs
F∼1(x) + s

2μs
(γU )∼1(x)

−1

2
γ (x)U∼1(x).

Using the integrating factor e− 1
2

∫ x
0 γ (y)dy , we solve in the form

U∼1(x) = −
∫ ∞

x
e
1
2

∫ x
y γ (z)dzG(y) dy = −T (G),

where G = i
2μs

∂2xU∼1 + i
2μs

F∼1 + s
2μs

(γU )∼1 − 1
2γU∼1 and T is an operator in the

form

T ( f )(x) =
∫ ∞

x
e
1
2

∫ x
y γ (z)dz f (y)dy.

Note that by the bound (9), we have that

|T ( f )(x)| ≤
∫ ∞

x
e2Nκe−κ|x−y|| f (y)|dy,

whence

‖T f ‖L2 ≤ ‖e2Nκe−κ|·|‖L1‖ f ‖L2 = 2e2Nκ

κ
‖ f ‖L2 .

In particular, the operator norm ‖T ‖L2→L2 depends only on N , κ .
Now, since U∼1(x) = e−iμs x u∼s(x), rewrite

γU∼1(x) = e−iμs xγ u∼s(x) = e−iμs x ((γ u)(x) − γ (x)u∼−s(x) − γ (x)u�(s,−s)(x)).

Thus, introduce the effective right hand side

G1 := i

2μs
∂2xU∼1 + i

2μs
F∼1 + s

2μs
(γU )∼1 + e−iμs x (γ u − γ u�(s,−s)),

so that u∼s(x) and u∼−s(x) are now in the relation

u∼s(x) − 1

2
eiμs x T (e−iμs xγ (x)u∼−s(x)) = eiμs x T (G1). (14)
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Multiplying the last equation by
√

γ and by introducing a new linear operator Ts f :=
1
2e

iμs x√γ T (e−iμs x√γ f ), we can record the last relation as follows

√
γ u∼s − Ts(

√
γ u∼−s) = eiμs x√γ T (G1). (15)

Similar arguments apply to u∼−s . More concretely, projecting P∼(−s) on both sides
to the Eq. (10), and adding iμsγ u∼(−s), we get

−∂2x u∼(−s)(x) + iμsγ (x)u∼(−s)(x) − μ2
s u∼(−s)(x) = −is(γ u)∼(−s)(x) (16)

+iμsγ u∼(−s)(x) + f∼(−s)(x).

Letting now f = e−iμs x F̄ and u = e−iμs x Ū and observing that

P∼(−s)(e
−iμs x g) = e−iμs x P∼1(g).

By (16), we obtain the equation

d

dx
Ū∼1(x) + γ (x)

2
Ū∼1(x) = − i

2μs
∂2x Ū∼1(x) − s

2μs
(γ (x)Ū )∼1(x)

+1

2
γ (x)Ū∼1(x) − i

2μs
F̄∼1(x)

With the help of the integrating factor e
1
2

∫ x
0 γ (z)dz , we solve the equation (by integrating

from −∞ to x) as follows

Ū∼1(x) =
∫ x

−∞
e
1
2

∫ y
x γ (z)dz D(y)dy = T ∗(D), (17)

where the right hand side is D = − i
2μs

∂2x Ū∼1 − s
2μs

(γ (x)Ū )∼1 + 1
2γ Ū∼1 − i

2μs
F̄∼1.

Again,

γ Ū∼1(x) = eiμs xγ u∼−s(x) = eiμs x (γ (x)u(x) − γ (x)u∼s(x) − γ (x)u�(s,−s)(x))

The effective right hand side becomes

D1 := − i

2μs
∂2x Ū∼1 − s

2μs
(γ (x)Ū )∼1 − i

2μs
F̄∼1 + 1

2
eiμs xγ u − γ u�(s,−s))

and we obtain the following reformulation of (17),

u∼−s + 1

2
e−iμs x T ∗(eiμs xγ u∼s) = e−iμs x T ∗(D1). (18)
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Again, a multiplication with
√

γ resolves (18) to

√
γ u∼−s + T ∗

s (
√

γ u∼s) = e−iμs x√γ T ∗(D1). (19)

Where T ∗
s f := 1

2e
−iμs x√γ T ∗(eiμs x√γ f )

Combining (15) and (19) allowsus to control
√

γ u∼±s andultimatelyu∼±s . Indeed,

√
γ u∼s = Ts(

√
γ u∼−s) + eiμs x√γ T (G1)

= Ts(−T ∗
s (

√
γ u∼s) + e−iμs x√γ T ∗(D1)) + eiμs x√γ T (G1)

whence we obtain the following operator equation for
√

γ u∼s

(I d + TsT
∗
s )(

√
γ u∼s) = Ts(e

−isx√γ T ∗(D1)) + eisx
√

γ T (G1).

Since (I d + TsT ∗
s ) is a symmetric operator, (I d + TsT ∗

s ) ≥ I d, we have that it is
invertible (in fact, ‖(I d + TsT ∗

s )−1‖L2→L2 ≤ 1),

‖√γ u∼s‖L2 ≤ ‖Ts(e−iμs x√γ T ∗(D1)) + eiμs x√γ T (G1)‖L2

≤ C(‖G1‖ + ‖D1‖), (20)

where in the last step, we have used that T , Ts , together with their adjoints are bounded
on L2, with bounds depending upon κ, N only.

So, it remains to find suitable bounds for ‖G1‖L2 , ‖D1‖L2 . We just provide the
bounds for ‖G1‖, as the bounds for ‖D1‖ proceed in an identical way. Clearly,

‖ i

2μs
F∼1‖L2 ≤ C

s
‖F‖L2 = C

s
‖ f ‖L2 .

By Plancherel’s

‖ i

2μs
∂2xU∼1‖L2 ≤ C

s
‖ξ2Û∼1‖L2 ≤ C

s
‖ξ2Û (ξ)ψ

(
ξ

ε

)
‖L2 ≤ Cε2

s
‖U∼1‖L2

≤ ε‖u∼s‖L2(R),

provided C
√
2ε ≤ 1. Next, by (12),

‖1
2
(γU )∼1 + e−iμs xγ u‖L2 ≤ ‖γU‖L2 + ‖γ u‖ = 2‖γ u‖L2 ≤ ε‖u‖L2 + Cε

‖ f ‖
s

.

Finally, by (13),

‖γ u�(s,−s)‖L2 ≤ C‖u�(s,−s)‖L2 ≤ ε‖u‖L2 + Cε

‖ f ‖
s

.
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Altogether, we obtain

‖G1‖ + ‖D1‖ ≤ Cε‖u‖L2 + Cε

‖ f ‖
s

. (21)

Based on (20) and (21), we obtain the following estimate

‖√γ u∼s‖L2 ≤ Cε‖u‖L2 + Cε

‖ f ‖
s

.

Part III: clearly, the same estimate holds for ‖√γ u∼−s‖L2 .
In order to get estimates for ‖u∼s‖L2 , ‖u∼−s‖L2 , one can now use the forms (14)

and (18), to deduce

‖u∼s‖ + ‖u∼−s‖ ≤ C(‖√γ u∼−s‖ + ‖√γ u∼s‖ + ‖G1‖ + ‖D1‖)
≤ Cε‖u‖L2 + Cε

‖ f ‖
s

.

Finally, with some absolute constant C (and with some Cε ∼ ε −1), we have

‖u‖L2 ≤ ‖u∼s‖ + ‖u∼−s‖ + ‖u�(s,−s)‖ ≤ Cε‖u‖L2 + Cε

‖ f ‖
s

.

Clearly, a choice of ε such that Cε < 1
2 , we obtain the desired bound (11). ��

Next, we need an estimate for L2 → H1 bounds of the resolvent (−∂2x + 1 +
isγ (x) − s2)−1.

Proposition 5 Let γ ≥ 0, γ �= 0 be a continuous function, that satisfies (9), with
constants κ, N. In addition, assume σ(A) ∩ iR = ∅.

Let δ > 0 and |s|2 ∈ (0, 1 − δ) ∪ (1 + δ,∞). Recalling R(is) = (−∂2x + 1 +
isγ (x) − s2)−1, we have the following estimates

‖R(is)‖L2→H1 ≤ Cδ,κ,N

‖R(is)‖H−1→L2 ≤ Cδ,κ,N (22)

As a consequence,
‖(is − A)−1‖H1×L2→H1×L2 ≤ Cδ,κ,N . (23)

Proof Let u ∈ H1(R) be the solution of (24)

(−∂2x + 1 + isγ (x) − s2)u = f (24)

for f ∈ L2.
Taking dot product of (24) with u yields,

〈−∂2x u, u〉 + (1 − s2)〈u, u〉 ≤ ‖ f ‖L2‖u‖L2
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Hence,

‖u‖2H1 ≤ ‖ f ‖L2‖u‖L2 + (s2 − 1)‖u‖2L2

By Proposition 4, we get

‖u‖2H1 ≤ Cδ,κ,N‖ f ‖L2
‖ f ‖L2(R2)

1 + |s| + Cδ,κ,N
(s2 − 1)

(1 + |s|)2 ‖ f ‖2L2(R)
.

This proves

‖R(is)‖L2→H1 ≤ Cδ,κ,N .

Hence by duality

‖R(is)‖H−1→L2 ≤ Cδ,κ,N . (25)

We now focus on (23), that is we show that the resolvent R(is,A) ofA is bounded
in H1(R) × L2(R). We estimate the norm of R(is,A) as follows,
∥∥∥∥R(is,A)

(
f
g

)∥∥∥∥
H1×L2

= ‖R(is)(is + γ (x)) f ‖H1 + ‖R(is)g‖H1

+‖(R(is)(is)(γ (x) + is) − I ) f ‖L2 + ‖R(is)(is)g‖L2

This implies that to estimate the norm of the resolvent operator R(is,A) as an operator
on H1 × L2, we need to obtain the following bounds

‖R(is)‖ = O(1) : L2 → H1,

‖R(is)(is + γ (x))‖ = O(1) : H1 → H1,

‖sR(is)‖ = O(1) : L2 → L2,

‖R(is)(is)(γ (x) + is) − I )‖ = O(1) : H1 → L2.

The estimates for sR(is) and R(is) are in (11) and (22) respectively. In order to
estimate

‖R(is)(is)[γ (x) + is)] − I‖H1→L2 ,

we use that

R(is)(is)[γ (x) + is)] − I = R(is)(∂2x − 1),

and hence, combining (25) together with the fact that ∂2x : H1 → H−1 is continuous.
For f ∈ H1(R), we have

‖(R(is)(is)[γ (x) + is)] − I ) f ‖L2 = ‖R(is)(∂2x − 1) f ‖L2 ≤ C‖(1 − ∂2x ) f ‖H−1

= C‖ f ‖H1
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This proves:

R(is)(is)(γ (x) + is) − I = O(1) : H1 → L2 (26)

It remains to estimate the norm of

R(is)(is + γ (x)) : H1 → H1.

We rewrite the above operator as

R(is)(is + γ (x)) = 1

is
[1 + R(is)(∂2x − 1)] (27)

If f ∈ H1 and ũ = R(is)(∂2x − 1) f ∈ H1, then

(−∂2x + 1 + isγ (x) − s2)ũ = (∂2x − 1) f ∈ H−1 (28)

Pair the Eq. (28) with ũ and take the real part to get,

‖∂x ũ‖2L2 − (s2 − 1)‖ũ‖2L2 ≤ ‖(−∂2x + 1) f ‖H−1‖ũ‖H1

≤ ‖ f ‖H1‖ũ‖H1 .

By Cauchy Schwartz inequality, we get

‖ũ‖2H1 ≤ 2(s2 − 1)‖ũ‖2L2 + ‖ f ‖2H1 . (29)

Next, when we estimate the L2- norm of ũ = R(is)(∂2x − 1) f , we used (26) to get

‖R(is)(∂2x − 1) f ‖L2 ≤ C‖ f ‖H1 (30)

Combining the estimates (29) and (30) proves that

R(is)(∂2x − 1) = O(|s|) : H1(R) → H1(R).

Then by the Eq. (27), we have

‖R(is)(is + γ (x)) f ‖L2 ≤ C‖ f ‖H1

Hence, (is − A)−1 = O(1) : H1 × L2 → H1 × L2. ��

3.2 Proof of Theorem 1: the implication (i) ⇒ (ii)

Take any γ ≥ 0, a continuous, bounded and non-negative function, that satisfies (3).
We would now like to prove exponential decay of the semigroup, as required in (i i)
of Theorem 1. This is basically what Proposition 4 does, except that it in addition also
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assumes σ(A) ∩ iR = ∅. This eventually turns out to be the case, but we have not
proved that yet.

Instead, we proceed by an approximating argument. More specifically, fix ε > 0
and consider γε(x) := γ (x) + ε and the corresponding operatorAε . We immediately
observe two things. First, since γε ≥ ε > 0, we have by Proposition 2, that σ(Aε) ∩
iR = ∅. Second, γε satisfies (8) with the constants κ, N of γ . Hence, γε satisfies
(9). Thus, we are ready to apply Proposition 4 to γε . For a fixed δ > 0 and |s|2 ∈
(0, 1 − δ) ∩ (1 + δ,∞), we have the estimate

‖(−∂2x + 1 + is(γ + ε) − s2)−1‖L2→L2 ≤ Cδ,κ,N

1 + |s| . (31)

In particular, note that the above bound is independent upon the parameter ε > 0. One
can now take ε → 0+ in order to obtain the operator (−∂2x +1+ isγ −s2)−1, together
with the desired bounds on its L2 → L2 operator norm.This could be justifies in at least
twoways.One is to show that for a fixed s, the family {(−∂2x +1+is(γ +ε)−s2)−1}ε>0
is Cauchy in B(L2), by using the resolvent identity. More or less equivalently, we can
directly construct (−∂2x + 1+ isγ − s2)−1 by the resolvent identity and the Neumann
theorem as follows

(−∂2x + 1 + isγ − s2)−1 := (−∂2x + 1 + is(γ + ε) − s2)−1

(I d − isε(−∂2x + 1 + is(γ + ε) − s2)−1)−1.

Indeed, in the formula above, the first inverse exists by (31), while the second inverse
exists by von Neumann for all small enough ε, since

‖isε(−∂2x + 1 + is(γ + ε) − s2)−1‖L2→L2 ≤ C |s|ε Cδ,κ,N

1 + |s| <
1

2
.

Now that we have constructed (−∂2x + 1 + isγ − s2)−1 for all s ∈ R such that
|s|2 ∈ (0, 1 − δ) ∪ (1 + δ,∞), we deduce the bound

‖(−∂2x + 1 + isγ − s2)−1‖L2→L2 ≤ Cδ,κ,N

1 + |s| , (32)

by simply letting ε → 0+ in (31). In addition, this shows that {iλ : |λ| �= 1} ⊂ ρ(A),
that is the whole imaginary line, with the possible exception of ±i are in the resolvent
set of A.

Now, we show that ±i also belong to the resolvent set of A. Indeed, otherwise,
we will have by Proposition 2, that σ(A) ⊃ {iλ : |λ| > 1}, which is a contradiction.
Thus, we have established that ±i ∈ ρ(A) or

‖(−∂2x ± iγ )−1‖L2→L2 ≤ C .
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Next, we show that (32) holds in a neighborhood of |s| = 1 as well. We have by the
resolvent identity

(−∂2x + 1 + isγ − s2)−1 − (−∂2x + iγ )−1

= (−∂2x + 1 + isγ − s2)−1[s2 − 1 + iγ (1 − s)](−∂2x + iγ )−1,

whence we can represent

(−∂2x + 1 + isγ − s2)−1

= (−∂2x + iγ )−1(I d − (s − 1)(s + 1 − iγ )(−∂2x + iγ )−1)−1.

Clearly, for s ∈ Rwith |s−1| << 1, say (10+‖γ ‖L∞)|s−1|‖(−∂2x +iγ )−1‖L2→L2 ≤
1
2 , the right-hand side is a well-defined operator and in addition

‖(−∂2x + 1 + isγ − s2)−1‖L2→L2 ≤ 2‖(−∂2x + iγ )−1‖L2→L2 .

Thus, s → ‖(−∂2x + 1+ isγ − s2)−1‖L2→L2 is bounded in a neighborhood of s = 1
and similarly, in a neighborhood of s = −1. In the same fashion as in Proposition 5,
we conclude that

sup
s∈R

‖(is − A)−1‖H1×L2→H1×L2 ≤ C < ∞.

By the Gearhart–Prüss theorem, ‖T (t)(1−A)−1‖H1×L2→H1×L2 ≤ Ce−λ0 t , for some
λ0 > 0. Since, (1 − A)−1 : H1 × L2 → H2 × H1 and it is onto, we conclude that

‖T t)g‖H1×L2 ≤ Ce−λ0t‖g‖H2×H1,

as stated.
Next, the implication (i i) ⇒ (i i i) is of course trivial. The equivalence of (i i i)

and (iv) is the essence of Theorem 3, see also Corollary 2. Finally, the implication
(iv) ⇒ (i) is contained in Proposition 3. This finishes the proof of Theorem 1.
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