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Abstract. We consider standing wave solutions of various dispersive models
with non-standard form of the dispersion terms. Using index count calculati-
ons, together with the information from a variational construction, we develop
sharp conditions for spectral stability of these waves.

1. Introduction and statement of the main results. For s 2 (0, 1] and d � 1,
we consider the focusing fractional Schrödinger equation

iut � (��)su+ |u|↵u = 0, (t, x) 2 R+ ⇥Rd (1)

In addition, we shall be interested in the fractional Klein-Gordon equation

utt + (��)su+ u� |u|↵u = 0, (t, x) 2 R⇥Rd (2)

These nonlocal equations arise in a variety of models in mathematical physics, see
many examples in [1] and the references therein. Also, a similar model

iut + (��)su+ |u|↵u = 0, (3)

has been introduced by Laskin in quantum physics [17], and it is a fundamental
equation of fractional quantum mechanics, a generalization of the standard quantum
mechanics extending the Feynman path integral to Levy processes[17]. Further, in
[10], Hong and Sire have discussed the local well-posedness and ill-posedness in
Sobolev spaces, and in [9], Guo and Huo focused on the global well-posedness for
the Cauchy problem of the 1-D fractional nonlinear Schrödinger equation with data
in L2(R). Regarding well-posedness in the natural energy space, one has local and
hence global well-posedness for Cauchy data in Hs(Rd), provided ↵ < 4s

d , due to
the conservation law. Generally, some solutions will blow up for ↵ > 4s

d , [5].
Additionally, we will be interested in two higher order dispersion models, which

are outside of the scope of (1) and (2). Namely, we consider the fourth order cubic
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Schrödinger equation, in one spatial dimension

iut + uxx � uxxxx + |u|2u = 0 (4)

and the fourth order cubic Klein-Gordon equation

utt + uxxxx � uxx + u� |u|2u = 0, (5)

The fourth order Schrödinger equation was introduced in [14] and [15], and it has
an important role in modeling the propagation of intense laser beams in a bulk
medium with Kerr nonlinearity. Moreover, the equation was also used in nonlinear
fiber optics and the theory of optical solitons in gyrotropic media. In this paper,
we are interested in the existence and linear stability of standing wave solutions for
these equations.

1.1. Standing wave solutions for fractional models. The existence of spe-
cial solutions is an important feature of the fractional models. More precisely, we
seek solutions of the fractional NLS equation (i.e. (1)) in the form u!(t, x) =
ei!tQ!(x),! > 0, with Q! > 0. We obtain the following profile equation

!Q! + (��)sQ! �Q↵+1

! = 0, x 2 Rd (6)

For the fractional Klein-Gordon equation, we have the profile equation

(1� !2)R! + (��)sR! �R↵+1

! = 0, x 2 Rd. (7)

where we require that |!| < 1, R! > 0. Clearly (6) and (7) are closely related
to each other. Indeed, setting for each ! 2 (�1, 1), � := 1 � !2 > 0, whence
R! = Q� . Thus, we proceed to describe the properties of Q!, keeping in mind this
relationship.

Note that the equation (6) enjoys a nice scaling property, which allows one to
explicitly describe the solutions Q! of (6) in terms of a single function. To this end,
consider (6) with ! = 1,

(��)sQ+Q�Q↵+1 = 0, x 2 Rd, (8)

where we henceforth adopt for brevity the notation Q = Q1. If one establishes that
(8) has a unique (modulo symmetries) solution Q, then all solutions of (6) (modulo
symmetries) are given by the formula Q! = w

1
↵Q(w

1
2sx).

The equation (8) has been well-studied, at least in the classical case s = 1, in the
last thirty years. First, it is well-known that for s = 1, d = 1,↵ > 0, such solutions
are explicitly given in terms of powers of the sech functions. Clearly, one cannot
hope for such solutions to be explicit outside of the cases mentioned above. In the
case s = 1, d � 1, ↵ > 0, it has been shown in the classical paper [16] that such
Q : Q > 0 is unique, modulo the translational symmetries. In the fractional case,
i.e. s 2 (0, 1), this di�cult problem was resolved recently. It has been shown (in [7]
for the case d = 1 and subsequently in [8] for the case d � 2) that (8) possesses a
unique positive radial solution1, provided

0 < ↵ < ↵⇤(s, d) =

8
><

>:

4s

d� 2s
s <

d

2

1 s >
d

2
.

On the other hand, Pokhozaev type arguments for the elliptic equation (8) show
that smooth and localized solutions Q do not exist, when ↵ > ↵⇤(s, d).

1 which we refer to, with a slight abuse of notation, by Q(|x|)
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In addition to the uniqueness, a number of additional properties of Q were es-
tablished, which will be important for us as well and we discuss them below. The
main tool in establishing all these important results has been the heavy use of the
fact that a variant of (8) is in fact the Euler-Lagrange equation of a particular
constrained minimization problem and Q is its minimizer.

1.2. Standing waves for fourth order models. It is clear that the fourth order
case (which roughly corresponds to the case s = 2, d = 1 of our fractional family
of equations) does not fit in the Frank-Lenzmann theory. Indeed, important ingre-
dients of their proofs break down, such as maximum principle and positivity of the
heat kernels of the corresponding semigroups, to mention a few. Nevertheless, it is
an interesting question whether there exist any reasonable solutions of the profile
equations and if so, what are their stability properties. More precisely, we again
consider solutions in the form u = ei↵t� of (4), which yields the profile equation

�0000 � �00 + ↵�� �3 = 0. (9)

The ansatz �(x) = asech2(bx) produces, for ↵ = 4

25
, the solution

�(x) =

r
3

10
sech2

✓
x

p
20

◆
. (10)

Here, the solution displayed in (10) serves as a standing wave to the fourth order
Schrödinger equation (4). A simple modification provides a solution to the fourth
order Klein-Gordon equation as well. Indeed, a direct verification shows that

u(x, t) = ei
p

21
5 t�(x) (11)

is a solution to (5). One of the main di�culties associated with the stability ana-
lysis of (10) ( (11) respectively) is the fact that no explicit solution is available for
values of ↵ 6= 4

25
. In other words, since we lack a one parameter family of soluti-

ons, the spectral computations become quite delicate. In particular, the standard
approach to computing certain quantities related to stability depends on taking a
derivative (in the explicit solution) in terms of ↵. This is the usual presentation
of the Vakhitov-Kolokolov criteria, which in this case necessarily fails, due to the
fact that such an explicit formula in terms of ↵ is simply unavailable. We overcome
these issues by resorting to the positivity theory as developed in [2, 3, 4].

In the next sections, we consider the linearized problems associated with the
stability of these solitary waves.

1.3. The eigenvalue problem for the fractional NLS model. We first linea-
rize around the standing wave Q = Q1 in (1). Using the ansatz

u = eit{Q+ ('+ i )}, (12)

and taking real and imaginary parts leads us to

't = (��)s +  �Q↵ 

� t = (��)s'+ '� (↵+ 1)Q↵'.
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Introduce the skew symmetric portion is J :=

✓
0 �1
1 0

◆
and the self-adjoint

portion of the linearized operator L :=

✓
L1 0
0 L2

◆
with

L1 = (��)s + 1� (↵+ 1)Q↵,

L2 = (��)s + 1�Q↵.

both acting on the domain H2s(Rd). It is now clear that the eigenvalue problem is
in the form

@t

✓
'
 

◆
= JL

✓
'
 

◆
(13)

Standard scaling argument shows that stability for Q1 is equivalent to the stability
for Q!,! > 0, whence we henceforth concentrate on this particular case.

1.4. The eigenvalue problem for the fractional Klein-Gordon model. For
the fractional KG model, (2), we linearize at the solution eiwt(1 � w2)

1
↵Q((1 �

w2)
1
2sx). More precisely, we take the ansatz

u = (1� w2)
1
↵ eiwt

{Q((1� w2)
1
2sx) + v((1� w2)

1
2sx, t)},

Ignoring all second and higher order terms leads us to the eigenvalue problem

iwvt + vtt � w2(Q+ v) + (1� w2)(��)sQ+

+ ((1� w2)(��)sv +Q+ v � (1� w2)(Q↵+1 +Q↵v + ↵Q↵
<(v)) = 0,

Letting v =

✓
<v
=v

◆
=

✓
'
 

◆
allows us to rewrite the eigenvalue problem in the

following matrix form
✓
'
 

◆

tt

+

✓
0 �w
w 0

◆✓
'
 

◆

t

+ (1� w2)L

✓
'
 

◆
= 0 (14)

where L is already defined in (13). Equivalently, writing ' ! e�t', ! e�t , one
can write the last second order model as a first order system in the form

@t

0

BB@

'
 
't

 t

1

CCA = JL

0

BB@

'
 
't

 t

1

CCA , (15)

where

J =

0

BB@

0 0 1 0
0 0 0 1
�1 0 0 w
0 �1 �w 0

1

CCA ,L =

0

BB@

(1� w2)L1 0 0 0
0 (1� w2)L2 0 0
0 0 1 0
0 0 0 1

1

CCA (16)

are a skew-symmetric and a self-adjoint operators respectively.

1.5. The eigenvalue problem of the fourth order models. We now derive
the relevant eigenvalue problem for the fourth order Schrödinger model (4).

In order to consider the stability of the wave ei↵t�, with ↵ = 4

25
and � given by

(10). We take

u = ei↵t[�+ v + iw], (17)
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for real-valued functions v, w and plug it into (4). Ignoring the contributions of
terms in the form O(v2), O(w2) and some algebra leads us to the the eigenvalue
problem

@t

✓
v
w

◆
=

✓
0 �1
1 0

◆✓
@4x � @2x + ↵� 3�2 0

0 @4x � @2x + ↵� �2

◆✓
v
w

◆
(18)

As usual, we denote J =

✓
0 �1
1 0

◆
, L =

✓
L1 0
0 L2

◆
with

⇢
L1 = @4x � @2x + ↵� 3�2,
L2 = @4x � @2x + ↵� �2.

(19)

Finally, we discuss the linearization (and subsequently the eigenvalue problem) as-
sociated with the solution (11) to the fourth order cubic equation (5). To in-

troduce proper notations, let � =
p
21

5
, so that the wave is exactly ei�t�(x) =

ei�t
q

3

10
sech2(

q
1

20
x). Setting

u = ei�t(�+ '+ i ),

plugging this ansatz into (5), ignoring the contributions of the type O('2), O( 2)
and taking real and imaginary parts, we obtain

✓
'
 

◆

tt

+

✓
0 �2�
2� 0

◆✓
'
 

◆

t

+

✓
L1 0
0 L2

◆✓
'
 

◆
= 0, (20)

where L1, L2 are exactly the operators introduced in (19). We can also write a
further equivalent formula

@t

0

BB@

'
 
't

 t

1

CCA =

0

BB@

0 0 1 0
0 0 0 1

�L1 0 0 2�
0 �L2 �2� 0

1

CCA

0

BB@

'
 
't

 t

1

CCA =: H

0

BB@

'
 
't

 t

1

CCA (21)

We note that in addition

H = JL =

✓
0 I2

�I2 B

◆✓ eL 0
0 I2

◆
(22)

eL =

✓
L1 0
0 L2

◆
, B =

✓
0 �2�
2� 0

◆
, I2 =

✓
1 0
0 1

◆
. (23)

1.6. Main results. We are now ready to state our results, first for the fractional
NLS.

Theorem 1. The standing waves ei!tQ! of the fractional NLS (1) are linearly and
orbitally stable for ↵ < 4s

d . Moreover, they are linearly unstable for ↵ > 4s
d .

For the fractional Klein-Gordon model, the soliton ei!t(1� !2)
1
↵Q((1� !2)

1
2sx)

is spectrally stable if and only if

↵ <
4s

d
,

r
4s↵

4s↵+ 4s� ↵d
< |!| < 1

Our next result concerns the stability of the waves for the fourth order Schrödinger
and Klein-Gordon equations.

Theorem 2. The wave ei↵t� (with ↵ = 4

25
and � given by (10)) is spectrally stable

solution of (4). The wave ei�t�, with � =
p
21

5
is spectrally unstable as a solution

to the fourth order Klein-Gordon model (5).
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The plan of the paper is as follows - in Section 2, we introduce first the instability
index counting theory, which will be the main theoretical tool for us. Then, we
describe the relevant spectral theory of the self-adjoint portion of the linearized
operators. In Section 3, we apply the instability index count to the standing waves
of the fractional NLS and Klein-Gordon models and derive sharp conditions for
their spectral stability. In Section 4, we use the theory developed by J. Albert,
[2] (presented in some details in the Appendix) in order to obtain the necessary
spectral information for the self-adjoint pieces of the linearized operators. Using
the index count, the spectral stability of the solutions is reduced again to a sign
condition for a Vakhitov-Kolokolov type quantities. These are computed explicitly
as infinite series, again by following some ideas by Albert, [2], presented in Section
B.2.

2. Preliminaries. We start by outlining the instability index count theory, as
developed in [11, 12]. We will constrain ourselves to a simple, yet representative
corollary, which su�ces for our purposes. We consider the eigenvalue problem in
the form

JLf = �f, (24)

where J is assumed to be bounded, invertible and skew-symmetric (J ⇤ = �J ),
while (L, D(L)) is self-adjoint(L⇤ = L) and not necessarily bounded, with finite
dimensional kernel Ker[L]. In addition, we assume that L has a finite number of
negative eigenvalues, n(L) and J

�1 : Ker[L] ! Ker[L]?. Here, the orthogonality
is understood with respect to the dot product of the underlying Hilbert space H :
D(L) ⇢ H.

Let kr denote the number of positive eigenvalues of (24), kc be the number of
quadruplets of eigenvalues with non-zero real and imaginary parts, and k�i , the
number of pairs of purely imaginary eigenvalues with negative Krein-signature2.
Introduce the matrix D as follows. Let Ker[L] = {�1, . . . ,�n}, then

Dij := hL
�1[J�1�i],J

�1�ji. (25)

Note that the last formula makes sense, since J�1�i 2 Ker[L]?. Thus L�1[J�1�i]
is well-defined. The index counting theorem, see Theorem 1, [12] states that if
det(D) 6= 0, then

kr + 2kc + 2k�i = n(L)� n(D). (26)

2.1. Spectral information regarding the operators L1, L2. By the representa-
tions of the Hamiltonian in both (13) and (16), it is clear that the spectral properties
of the operators L1, L2 will play substantial role in our analysis.

Proposition 1. The operator L1 defined in (13) has a unique negative eigenva-
lue, which is simple. The eigenvalue zero is of multiplicity d, with Ker[L1] =
span{@1Q, . . . , @dQ}. The operator L2 satisfies L2 � 0, with an eigenvalue at zero,
which corresponds to the eigenfunction Q. As such the eigenvalue at zero is simple.
Moreover, the essential spectrum for both operators is [1,1).

Proof. For L1, we refer to the paper [8], where it was shown that n(L1) = 1, while
Ker[L1] = {@1Q, . . . , @dQ}.

Next, we clearly have L2[Q] = 0, by construction of Q. We now show that L2

has no negative eigenvalues. Assume for a contradiction that L2 has a negative

2The precise definition of those is provided in many references, for example in [11]. This will
be irrelevant for us, since in our applications k�i = 0
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eigenvalue, say we pick the smallest such eigenvalue ��2. Then, there is an F 6= 0,
so that L2[F ] = ��2F, kFk = 1. According to the Rayleigh characterization of
e-values,

��2 = inf
kGk=1

hL2G,Gi

and so F is a solution of this problem. Rewrite this constrained minimization
problem in the form

8
><

>:

hL2G,Gi = k(��)s/2Gk
2

L2 + kGk
2

L2 �

Z

Rd

Q↵(x)G2(x)dx ! min
Z

Rd

G2(x)dx = 1
(27)

We now need to refer to recent results on the multi-dimensional Polya-Szegö ine-
quality, which imply that the functional hL2G,Gi is minimized by its decreasing
rearrangement. More precisely, for s 2 (0, 1), there is the generalized Polya-Szegö
inequality3

1k(��)s/2GkL2 � k(��)s/2G⇤
kL2 ,

where G⇤ is the decreasing rearrangement of the function G. Moreover, since Q↵ is
radially decreasing, there is the simple inequality

Z

Rd

Q↵(x)G2(x)dx 

Z

Rd

Q↵(x)[G⇤]2(x)dx (28)

where the equality in (28) is achieved only if G = G⇤. This is a simple consequence
of

R
fg 

R
f⇤g⇤, see Theorem 3.4, [18]. In addition, an elementary property

of the decreasing rearrangement says that kGkLp = kG⇤
kLp for p 2 (0,1) and

in particular for p = 2. It follows that hL2G,Gi � hL2G⇤, G⇤
i, with equality

possible only if G = G⇤, while clearly kGkL2 = kG⇤
kL2 . Thus, the eigenfunction F ,

corresponding to the lowest eigenvalue ��2 must necessarily be such that F = F ⇤

( since it isa solution to the constrained minimization problem (27)). In particular
F � 0. But then hF,Qi = 0, since any two e-functions corresponding to two di↵erent
eigenvalues of L2 must be orthogonal. This however leads to a contradiction, since
F � 0, Q > 0. Thus, 0 is the lowest eigenvalue for L2, whence L2 � 0.

3. On the stability of the standing waves for the fractional NLS and
Klein-Gordon equations. We consider the cases of NLS and Klein-Gordon se-
parately, although there is quite a few calculations that will appear in both.

3.1. Stability of fNLS waves. For the stability of the eigenvalue problem (13),

we take the standard transformation

✓
'
 

◆
! e�t

✓
'
 

◆
, which puts us in the

form (24). In addition, due to the results of Proposition 1, the self-adjoint operator
L satisfies n(L) = 1 and

Ker[L] =

⇢✓
0
Q

◆
,

✓
@1Q
0

◆
, . . . ,

✓
@dQ
0

◆�
=: {Q0, Q1, . . . , Qd}. (29)

In addition, it is clear that J
�1 = �J : Ker[L] ! Ker[L]?, whence the matrix

D 2 M(d+1)⇥(d+1) may be defined as in (25). Obviously, for j � 1, D0j = 0. Next,
note that for i � 1, j � 1, i 6= j, we have

Dij = hL�1

2
@iQ, @jQi = 0, (30)

3for which one can consult the recent work [7] or the direct and easy proof, which we provide
in the Appendix, Proposition 3
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since @iQ is odd in the ith variable (and then so4 is L�1

2
[@iQ]), while @jQ is odd in

the jth variable. On the other hand, for i = 1, . . . d,

Dii = hL�1

2
@iQ, @iQi > 0,

due to the positivity of L�1

2
on Ker[L2]? and the fact that @iQ ? Ker[L2] =

span[Q]. Clearly now, n(D) = n(hL�1
J

�1Q0,J�1Q0i = n(hL�1

1
[Q], Qi).

In order to compute this quantity, we use the standard scaling properties of the
profile equation (8). Namely, Qµ := µ

1
↵Q(µ

1
2sx) solves

µQµ + (��)sQµ �Q↵+1

µ = 0.

Taking derivative in µ yields the relation L1[
@Qµ

@µ ] = �Qµ, whence since Qµ ?

Ker[L1], we derive L�1

1
[Qµ] = �

@Qµ

@µ , whence

hL�1

1
[Q], Qi = �

1

2
@µkQµk

2
|µ=1 = �

1

2

✓
2

↵
�

d

2s

◆
kQk

2. (31)

In view of (26), the fact that n(L) = 1, the spectral stability of fNLS waves is
equivalent to hL�1

1
[Q], Qi < 0, or 2

↵ �
d
2s > 0. This is easily seen to be equivalent

to ↵ < 4s
d as stated. Due to the structure of Ker[L], namely (29), all the elements

of the Ker[L] are accounted for by invariances of the model, so by the results of
[13] (Theorem 5.2.11) and the well-posedness of the Cauchy problem in the energy
space Hs(Rd) established in [6], the waves are orbitally stable as well.

3.2. Stability of the fKG waves. The relevant eigenvalue problem for the stabi-
lity of the fractional Klein-Gordon waves is JL ~X = � ~X, where J ,L are given by
(16). By the form of L, we have that n(L) = n(L1) = 1, owing to Proposition 1.
The description of Ker[L] is again explicit, thanks again to Proposition 1. More
precisely, we have

Ker[L] = {Q0, Q1, . . . , Qd}, Q0 =

0

BB@

0
Q
0
0

1

CCA , Qj =

0

BB@

@jQ
0
0
0

1

CCA , j = 1, . . . , d.

Since J
�1 =

0

BB@

0 ! �1 0
�! 0 0 �1
1 0 0 0
0 1 0 0

1

CCA, we have by (25), that for i � 1, j � 1, i 6= j,

Dij =
!2

1� !2
hL�1

2
[@iQ], @jQi = 0,

by (30). Similarly, Di0 = D0i = 0 by our previous arguments for the fNLS case.
Thus, the matrix D has only diagonal potentially non-zero entries. In fact, the
entries Dii, i = 1, . . . , n are positive due to the positivity of L�1

2
on Ker[L2]?.

4Note that the space of functions which are odd in the jth, j = 1, . . . , d variable, is an invariant
subspace for L�1

2
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Indeed,

Dii = hL
�1

J
�1Qi,J

�1Qii =

= h

0

BBB@

L�1
1

1�!2 0 0 0

0 L�1
2

1�!2 0 0
0 0 1 0
0 0 0 1

1

CCCA

0

BB@

0
�!@iQ
@iQ
0

1

CCA ,

0

BB@

0
�!@iQ
@iQ
0

1

CCAi =

=
!2

1� !2
hL�1

2
[@iQ], @iQi+ k@iQk

2 > 0.

Thus, as before, matters have been reduced to D00, more precisely, n(D) = n(D00).
The stability condition, according to (26) is exactly D00 < 0. We have, according
to (31)

D00 = hL
�1

J
�1Q0,J

�1Q0i =
!2

1� !2
hL�1

1
[Q], Qi+ kQk

2 =

=


!2

1� !2

✓
d

4s
�

1

↵

◆
+ 1

�
kQk

2.

It is clear that the stability condition is satisfied only if ↵ < 4s
d and then,

!2

1� !2
>

4s↵

4s� ↵d
.

Resolving this last inequality yields the condition

!2 >
4s↵

4s↵+ 4s� ↵d
.

Since we have initially required |!| < 1 for the existence of the waves, we can finally
formulate the necessary and su�cient condition for stability as follows

4s↵

4s↵+ 4s� ↵d
< !2 < 1.

Note that this last inequality implicitly requires ↵ < 4s
d , since otherwise the double

inequality will not have any solutions in !.

4. On the stability of the standing waves for the fourth order models. We
start this section with a discussion about the spectral properties of the self-adjoint
operators L1, L2, defined in (19). We have the following result.

Proposition 2. The operator L1 with domain H4(R)⇥H4(R) has a unique negative
eigenvalue, which is simple. The eigenvalue zero is of dimension exactly d = 1, with
associated eigenfunctions @j�, j = 1, . . . d. L2 has no negative eigenvalues, it has
eigenvalue at zero, which is simple. Moreover the essential spectrum is the interval
[↵,1).

Note: The results about L1 stated here have been established in [2], in relation
to a model of water wave equations with non-standard dispersions. The result about
L2 is a minor modification of these arguments, we present it below in Appendix B.
Having the results of Proposition 2 allows us to go through the index counting (26).
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4.1. Stability of the wave of the fourth order Schrödinger equation (4).
Matters are reduced to the number of negative eigenvalues of D, introduced in (25).
As we have previously observed on the related fractional NLS model,

D =

✓
hL�1

2
�0,�0i 0
0 hL�1

1
�,�i

◆
,

which in view of the positivity of L�1

2
on Ker[L2]? reduces to the consideration

of the quantity hL�1

1
�,�i. The stability is then characterized by the condition

hL�1

1
�,�i < 0. Recalling that L1 = @4x � @2x + ↵ � 3�2, with � given by (10),

we apply the Albert’s theory for the quantity hL�1

1
�,�i, see Section B.2 and (37)

below. More specifically, in the notations there, we take n = 2, r = 2, p = 2, which
yields the formula

�2j =
�(2j + 2)

�(3)
·

�(7)

�(2j + 6)
=

6!

2!
·
(2j + 1)!

(2j + 5)!
. (32)

and hence

bj =
360(2j + 7/2)(j + 1)2(j + 5/2)2(2j)!

((2j + 2)(2j + 3)(2j + 4)(2j + 5)� 360) (2j + 6)!
. (33)

Then we have5
P1

j=1
bj ⇡ 0.0118141, b0 = �0.045573, whence

hL�1

1
�,�i = a

1X

j=0

bj < 0,

whence we conclude the stability of the wave (10).

4.2. On the instability of the wave (11) of the fourth order Klein-Gordon
model. We need to consider the eigenvalue problem (21), with L,J given in (23).
Based on the index counting theory, (26) and the fact that n(L) = 1 by proposition
2, we are interested in the number of negative eigenvalues of the matrix

D =

✓
hL

�1
J

�1�1,J�1�1i hL
�1

J
�1�1,J�1�2i

hL
�1

J
�1�2,J�1�1i hL

�1
J

�1�2,J�1�2i

◆

where the two elements of the kernel are given by

�1 =

0

BB@

�0

0
0
0

1

CCA , �2 =

0

BB@

0
�
0
0

1

CCA

Since

J
�1 =

0

BB@

0 2� �1 0
�2� 0 0 �1
1 0 0 0
0 1 0 0

1

CCA (34)

5Here we have used Mathematica for an approximation of the value of the series



STABILITY OF WAVES FOR SOME NON-STANDARD DISPERSIVE EQUATIONS 1381

We have

D11 = hL
�1

J
�1�1,J

�1�1i =

=

*
0

BB@

L�1

1
0 0 0

0 L�1

2
0 0

0 0 1 0
0 0 0 1

1

CCA

0

BB@

0
�2��0

�0

0

1

CCA ,

0

BB@

0
�2��0

�0

0

1

CCA

+
=

= 4�2
hL�1

2
�0,�0i+ k�0k2 > 0,

since L�1

2
is positive on Ker[L2]? = span[�]?. A quick inspection shows D12 =

D21 = 0, while

D22 = 4�2
hL�1

1
�,�i+ k�k2.

Thus, we have reduced matters to the sign of D22, as usual. It turns out that
D22 > 0, which in view of (26) implies a real instability, since then n(D) = 0, while
n(L) = 1, whence the left-hand side of (26) is one. Thus, it remains to show that
D22 > 0. We apply again Albert’s theory, see Section B.2 in the Appendix.

We have in fact just evaluated the quantity hL�1

1
�,�i in our Schrödinger calcu-

lations. With the same �2j and bj as in (32), (33) respectively, we find

hL�1

1
�,�i =

1

3
(

r
9

10
)2

1p
1/20

✓
23�(2)

⇡�(2)

◆2

(
1X

j=0

bj) ⇡ �0.0979003,

However, for the function � defined in (10), k�k2 ⇠ 1.7888543... whence

D22 = 4�2
hL�1

1
�,�i+ k�k2 ⇠ 0.802019... > 0.

Appendix A. The Polya-Szegö inequality for fractional Laplacians. Here,
we present a proof of the Polya-Szegö inequality for fractional Laplacians.

Proposition 3. Let s 2 (0, 1], d � 1. Then, for all functions u 2 Ḣs, we have that
its decreasing rearrangement u⇤

2 Ḣs and moreover

k(��)s/2ukL2(Rd) � k(��)s/2u⇤
kL2(Rd). (35)

In addition, equality is achieved if and only if there exists x0 2 Rd and a decreasing
function ⇢ : R+ ! R+, so that u(x) = ⇢(|x� x0|).

Note: The classical Polya-Szegö inequality corresponds to the particular case
s = 1.

Proof. Let s < 1 and define

cs :=

Z 1

0

1� e�y

y1+s
dy.

Setting y = 4⇡2
|⇠|2t, we have the representation

(2⇡|⇠|)2s =
1

cs

Z 1

0

1� e�4⇡2t|⇠|2

t1+s
dt.

Equivalently

(��)s =
1

cs

Z 1

0

1� et�

t1+s
dt.
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Since et�f = Kt ⇤ f and Kt(x) = (4⇡t)�d/2e�|x|2/(4t) is strictly symmetric de-
creasing, we have by the simple rearrangement inequality

R
fg 

R
f⇤g⇤dx (see

Theorem 3.4, [18]) that

het�u, ui = hKt ⇤ u, ui  hKt ⇤ u
⇤, u⇤

i = het�u⇤, u⇤
i.

and equality is achieved only if u(x) = ⇢(|x � x0|) for a decreasing function ⇢ :
R+ ! R+ and x0 2 Rd. Thus,

k(��)s/2uk2 = h(��)su, ui =
1

c�

Z
hu, ui � het�u, ui

t1+�
dt �

�
1

c�

Z
hu⇤, u⇤

i � het�u⇤, u⇤
i

t1+�
dt = h(��)su⇤, u⇤

i = k(��)s/2u⇤
k
2.

Moreover, equality is possible only if u(x) = ⇢(|x� x0|), as explained above.

Appendix B. Some aspects of Albert’s total positivity theory. In this
section, we present some basic results from John Albert’s positivity theory, [2]. The
goal is to describe the basic structure of the spectrum of the self-adjoint operators
L1, L2 introduced in (19), as well as the computations of certain Vakhitov-Kolokolov
type quantities as required in the consideration of the eigenvalue problems (18) and
(21). Most of the results stated here are due to Albert, [2], so we state them without
proofs by referring to the original paper. Back to the specifics, let T be defined by

T g(x) = Mg(x) + !g(x)� 'p(x)g(x),

where p � 1 is an integer, ! is a real parameter, ' is real-valued solution of

(M + !)' =
1

p+ 1
'p+1.

having a suitable decay at infinity, and M is defined as a Fourier multiplier operator
by dMg(⇠) = m(⇠)ĝ(⇠), where m(⇠) is a measurable, locally bounded, even function
on R satisfying

• m(⇠) ⇠ |⇠|µ for |⇠| >> 1
• m(⇠) > b,

where A1 and A2 are positive real constants, µ � 1, and ⇠0 and b are real numbers.
Under these assumptions, T is self-adjoint, with a.c. spectrum consisting of [!,1)
and (at most) finitely many, counting multiplicities, eigenvalues in (�1,!].

In order to obtain additional spectral properties of T , Albert, [2] introduces a
one-parameter family of operators {S✓}✓�0, on L2(R) by

S✓g(x) =
1

!✓(x)

Z

R
K(x� y)g(y) dy,

where K(x) = c'p(x) and !✓(x) = m(x)+ ✓+!, so that the operators S✓ act on the
Hilbert space

X = {g 2 L2(R); kgkX,✓ =

✓Z

R
|g(x)|2!✓(x) dx

◆1/2

< 1}.

It is not hard to see that {S✓}✓>0 are compact symmetric operators on X, whence
one gets
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Corollary 1. �✓ is an eigenvalue of T (as an operator acting on L2(R)) with
eigenfunction g if and only if , 1 is an eigenvalue of S✓ (as an operator on X)
with eigenfunction ĝ. In particular, both eigenvalues have the same multiplicity.
In addition, S✓ has a family of eigenvectors { i(✓)}1i=0

forming an orthonormal
basis of X. Moreover, the corresponding eigenvalues {�i(✓)}1i=0

are real and can be
ordered as follows

|�0(✓)| � |�1(✓)| � · · · � 0.

There is also a result of Krein-Rutman-type, namely

Lemma 1. The eigenvalue �0(0) of S0 is positive, simple, and has a strictly positive
eigenfunction  0,0(x). Moreover, �0(0) > |�1(0)|.

The main result in Albert’s theory is due to fact that the kernel K = c'p lies in
a class of functions, which we describe below: a function h : R ! R is said to be in
the class PF (2) if :

(1) h(x) > 0 for all x 2 R;
(2) for any x1, x2, y1, y2 : x1 < x2, y1 < y2, there is

h(x1 � y1)h(x2 � y2)� h(x1 � y2)h(x2 � y1) � 0

with a strict inequality whenever the intervals (x1, x2) and (y1, y2) do intersect.

The central result of [2] is then summarized in

Theorem 3. Suppose '̂ > 0 on R and K = c'p 2 PF (2). Then T has a simple,
negative eigenvalue , and the eigenvalue 0 of T is simple.

With this, we are now ready to present the proof of Proposition 2.

B.1. Proof of Proposition 2. The statement for L1 has been already established
in [2]. Regarding L2, the theory developed in the last paragraphs cannot be applied
directly to L2. On the other hand, to L2, we can still be associated to the family
of operators S✓, ✓ � 0. It is clear that L2� = 0. By Corollary 1, we obtain that 1 is
an eigenvalue of S0 with eigenfunction �̂.

We now claim that if �0(0) is the first eigenvalue of S0, we have �0(0) = 1. The
proof is by contradiction. Assume that �0(0) 6= 1 and let  0,0 be the associated
eigenfunction. By Lemma 1.9 we have  0,0 > 0. Since

\(sech2(·))(⇠) =
⇡⇠

sinh(⇡⇠
2
)
> 0

it follows that �̂ > 0, hence the scalar product in L2(R) between  0,0 and �̂ is
strictly positive, which contradicts the fact that the eigenfunctions are orthogonal.
Thus 1 is a simple eigenvalue of S0, then zero is a simple eigenvalue of L2.

It remains to show that L2 has no negative eigenvalues. To do so, it is su�cient
to prove that 1 is not en eigenvalue of S✓ for any ✓ > 0. We know that

lim
✓!1

�0(✓) = 0

and ✓ 2 [0,1) 7! �0(✓) is a strictly decreasing function. Thus for ✓ > 0 and i � 1,

|�i(✓)|  �0(✓) < �0(0) = 1.

Thus it implies that 1 cannot be an eigenvalue of S✓, ✓ > 0, hence L1 cannot allow
negative eigenvalues.
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B.2. Computing the Vakhitov-Kolokolov type quantities for sechr soluti-
ons using Albert’s approach. For '(x) = (sech(x))r, r = 2n

p , it was established

that (see Lemma 4.7, [2]) there exist unique (n+ 1) tuple a0, . . . , an, so that
nX

i=0

ai(@
2i') =

'p+1

p+ 1
.

Thus, upon introducing the di↵erential operator Mn,p :=
Pn

i=1
@2i, and denoting

Cn,p := a0, we see that ' satisfies the profile equation

(Mn,p + a0)' =
'p+1

p+ 1
. (36)

With this notations, Albert has shown (see Theorem 4.10 in [2]) the following
formula

h(Mn,p + Cn,p � 'p)�1','i = a
1X

j=0

bj (37)

where a =
⇣

2
n+r�1

�(r)
⇡�(n)

⌘2

> 0, �m = �(r+m)

�(r+1)

�(r+2n+1)

�(r+2n+m)
and

bj =

✓
�2j

1� �2j

◆⇢
�(2j + 1) · (2j + n+ r � 1

2
)

�(2j + 2n+ 2r � 1)

�⇢
�(j + n)�(j + n+ r � 1

2
)

�(j + 1)�(j + r + 1

2
)

�2

.
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