ON THE STABILITY OF STANDING WAVES FOR P7T SYMMETRIC
SCRODINGER AND KLEIN-GORDON EQUATIONS IN HIGHER SPACE
DIMENSIONS

MILENA STANISLAVOVA AND ATANAS STEFANOV

ABSTRACT. We consider PT Schrodinger and Klein-Gordon equations in higher dimensional
spaces. After the construction of the standing waves, we proceed to study their spectral stability.
This extends, in the Schrodinger case, the recent results of Alexeeva et. al. [1] and Bludov et.
al. [6].

1. INTRODUCTION

1.1. Motivation, some history and previous works. About twenty years ago, Bender and
Boettcher, [3] have observed, on a very specific model, that parity and time symmetries can
create purely real spectrum of otherwise non - selfadjoint operators. On the mathematical side,
significant progress was made in [19, 20] where a characterization of such non-self adjoint Hamil-
tonians with real spectrum was found. While examples of such kind have existed before that, the
Bender-Boettcher work has been influential in that it spurred numerous studies, where concrete
physical applications were found, especially in quantum mechanics and waveguide optics. In fact,
the explicit Bender-Boettcher potential turned out to be relevant in the study of superconducting
wires, [24]. Note that all these early studies have been concentrated on the linear aspects of the
theory - that is of interest was the behavior of a linear Hamiltonian system in the form iy, = Ha,
where H* # H, but H is special in that it commutes with a PT operator, that is P7T-symmetric
Hamiltonian. Later on, many researchers have considered actual nonlinear models, driven by
PT-symmetric Hamiltonians. We will not give here an extensive review of these developments,
but we refer the reader to the excellent recent review article, [17]. From a modeling perspective,
the easiest (non-selfadjoint) model to consider is of the form?

irh = —iyx1 + Ko
. .
1Ty = KT1 + 177X

Adding the usual Kerr type interaction (and taking the same leading order approximation) leads
to the PT symmetric dimer, namely
(1) irh = —iyx1 + kT + c|z1|?71

irh = kry + iyTs + clra|?ry
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Lsee (36), (37) in [17] - note that this is a leading order approximation for stationary propagation of light in an
optical coupler with gain and loss, [7]
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The PT symmetric dimer is a typical non-linear P7T-symmetric model, which was extensively
studied in the literature, [28]. Further studies have considered generalizations of such models,
namely discrete PT-symmetric networks, [23]. These systems feature finitely many variables
x1,...,Tn, where the linear part involves closest neighbor interactions only. A consideration of a
large number of spatial nodes, with small distance between them, naturally leads to a continuous

model with two coupled nonlinear Schrodinger equations with gain and loss, namely (see (107)
in [17])

@) iU = —Uge — KU+ iyu + (cr|ul? + ea|v]?)u

iV = Vg — KU — iy + (calul? + c1|v]?)v
where £ > 0, > 0. This model was analyzed in detail in series of recent works, [1], [2] and a more
general version is considered in [6]. More precisely, the authors in these papers have explicitly
constructed such waves (in the form (5) below) and in addition, they have studied their linearized
stability properties. We will not review their results in detail, since the goal of this paper is to
generalize them.

We do so by extending these results in several directions. First, we consider more general
coupling, namely the Kerr interaction potentials are replaced by a general power p functions,
which are physically relevant in certain regimes®. Next, we consider these models in their higher
dimensional form, which substantially departs from the available results in the literature. It turns
out however that this fits well within our methods and no essentially new techniques are needed
in the study of these models. Next, we discuss the specific models under consideration.

1.2. The models and the solitons. We consider the model of PT coupled Schrédinger equa-
tions. Our presentation, for the Schrdinger case, mostly follows the recent works [1], [6], where
the one dimensional case was studied in detail. More specifically, for a parameter o > —1, we
consider the Schrédinger version

(3) { iug + Au+ (JuP~t + ajolP Hu+ v =iyu

. Rl d
ivg + Av + (a|ulP~L + [pP Yo +u = —iqw wv: Ry xR = C
and the Klein-Gordon equations

o f (= e (o=

v — Av + v — (aulPt + P + u = —iyv
Our main object of study will be the existence and stability of solitary wave solutions for (3) and
(4). More precisely, introduce the variables
(5) u = eiwte—ieU’ v = eiwtv*’
In terms of U, V, the Schrodinger PT system (3) becomes

(6) iU + AU — wU + (|UPP~Y + a|V[P~HU = — cos(0)V + i(yU — sin(9)V)
iVi + AV — 0V + (aUPL+ VPV = —cos(9)U + i(sin(0)U — vV).

while for the Klein-Gordon equation, we obtain

(7 Uy + 2iwU; — AU + (1 — w?)U — (JUP7E + a|VIPHYU = —cos(0)V +i(yU — sin(9)V)
Vit + 2iwVy — AV + (1 — )V — (a|UP7L + [VPHV = —cos(0)U + i(sin(0)U — V)

As in previous works, [1, 6], one takes v = sin(f). As a result, if we look for stationary, positive
and decaying solutions of (6) in the form U =V = ¢, we arrive at the single equation

(8) —Ap+ap—(1+a)¢? =0,6: R - RL

2see [17] for a discussion
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where we have denoted for convenience a? = w — cos(f). Thus implicitly, when dealing with this

type of solitons, we will require that w > cos(f) and o > —1. Similarly, stationary, positive and
decaying solutions of (7), with U = V = 1, are given by

(9) —Ap+ 0% — (1+a)y? = 0,4 : RT = R,

where we have denoted b? = 1 —w?+ cos(f). Similarly, we will implicitly require that 1+ cos(#) >
2

w

The equation (8) is well-studied in the literature. Existence of solutions was established by
variational methods in [5], see also [4]. These were the so-called ground state solutions, which
are obtained by constrained minimization methods. More specifically, for p € (1, pmax),

1+t 423
pmax— OO d:172,

there are positive and decaying solutions of (8). Establishing the uniqueness of such solutions
proved to be much harder problem - it was studied in [9], for a particular case and then in [18] for
the full range of p as in the existence results. More precisely, it was shown that for p € (1, pmax),
the equation (8) has an unique positive and decaying solution, modulo the translation invariances.
That is, there is an unique bell-shaped® and decaying function, say ©p.d R! — R1+, solving

(10) —Agpa+ Ppa =y g =0.
We consider solutions of ¢ of (8), in the form
2

(11) o) = (15 ya%wm—mw

14+«

where 29 € R? is arbitrary. Similarly, there exists yo € R, so that every solution of (9) is in the
form

N
(12) v = (155)  Pralle —

Our interest in this paper is the spectral stability of these ground state solutions for the classical
Schrodinger and Klein-Gordon models, but in the framework of the P7 symmetric versions (6)
and (7). Clearly, the stability of these solitons is independent on the translations zg, yg, so we
take zop = 0 in (11) and yo = 0 in (12).

1.3. The linearization and statement of main results. In this section, we provide the
rigorous framework for the stability of the solitary waves constructed in the previous section,
both in the Schrodinger and the Klein-Gordon contexts.

1.3.1. The linearization around the soliton of the Schridinger PT symmetric system. For the
Schrodinger system (6), we linearize by introducing the ansatz U = ¢ + 2,V = ¢ + w, which we
apply in (6). Recall v = sin(f). Ignoring the contributions of all terms in the form O(z?), O(w?),
we arrive at the following system

ize + Az —wz+ (1 +a)? L2+ (p— )P 'Rz + alp — 1) ' Rw = — cos(0)w + iy (z — w)
iwg + Aw — ww + (14 a)¢Prw + (p — )P Rw + a(p — 1)¢P 'Rz = — cos(0)z + iy(z — w)
Following [1], we introduce the new variables,
rit+irso=r=z4+w S +iso=8S=z—Ww

3ie. even, positive and decreasing in [0, co)
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In these variables, the eigenvalue problem takes the form

—rh + Arp —wry +p(1+ )P iry = —cos(0)r; — 2vsy
7+ Arg — wrg + (14 a)¢P~trg = —cos(0)rg + 2751
—sh + Asp —wsy + [p(1 — a) + 2a]¢P~Ls; = cos(0)s;
st + Asy — wsy + (1 + a)¢P~Lsy = cos(6)ss.

(13)

Taking into account (11) (note that zo = 0), it is clear that a dilation by a factor of a? will
simplify matters. Slightly abusing the notations, we replace r — e®t#r(a-), s — e®s(a-) to
rewrite the problem as follows

1
(14) JLX =pX, X =| 2 |,
1
52
where

B (L T.J (T 0y (0 1
L= ‘597“_(02 L na>’j_<02 J>’J_<—1 0 )’

I L, 0 I= L, 0 ’Fa:_Q;y na:2cos(9).
0 L_ a

and the scalar operators Ly are given by

Ly = -A+1—-ppP b L =-A+1—pr Y
1-— 2

L, = —A+1—w¢p*1::—A+l—pagpP*1.
1+«

Here we have used the short cut ¢ = ¢, 4 for the unique ground state solution of (10). We will
also drop the subscripts from the notations I'y, n, and we will instead use only I', n.

It is clear from the form of the eigenvalue problem (14) that the spectral properties of L play
an important role. Clearly, by Weyl’s theorem

Oa.c. (L—i-) = Ua.c.(L—) = Ua.c.<Loc) = [17 OO)

Regarding the point spectrum, it was proved in [18], see also [29], that L_ > 0, while L, has
a simple negative eigenvalue. The kernels of both operators also admit an explicit description.
More concisely?

(15) L_>0, L [g]=0, L[y >r">0,
0 .

(16) Ly[¢o] = opago, Ker[Ly]= Spcm[aﬁ j=1.dl, Liligwepr =K >0
Ty

Regarding the operator L,, an elementary algebra shows that p, > p for a € (—1,0), p, € (1,p)
for @ € (0,1) and py < 1 for a > 1. By obvious comparisons with Ly and (15), (16), it follows
that

(17) Ly > 0,0 € (1,00)
(18) n(Ly) =1, € (0,1)
(19) n(Ly) > d+ 1, € (—1,0),

2
4The value of 0p,a < 0 is in general not known explicitly except in d = 1, in which case op1 =1 — @,
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where we have used the notation n(S) to denote the number of negative eigenvalues of a self-
adjoint operator S. Denote the bottom of the spectrum of L, by o4, a simple eigenvalue. As a
consequence of (17), (18), o4 € (0,1) if° a > 1 and 04 € (0,.4,0), if a € (0,1).

1.3.2. The linearization around the soliton of the Klein-Gordon PT symmetric system. For the
Klein-Gordon equation, we apply similar approach. Apply the ansatz U = ¢ + 21 + iz, V =
¥ 4+ w1 + tws in the linearized equation (7) (again recalling v = sin(6)), we obtain

2 — 2wzl — Az + (1 — w?)zy — 2p(1 + )P Lz = — cos(B)wr — Y(z2 — wa)
2+ 2wzt — Azg + (1 — w?)zg — 2(1 + )yPLzg = — cos(B)wa + (21 — w1)
wy — 2wwh — Awy + (1 — w?)wy — 2(1 + a)pyYP~lwy = —cos(0)z1 — (22 — w2)
wh + 2ww) — Aws + (1 — w?)wg — 2(1 + a) PP~ twy = — cos(8)z2 + (21 — w1).

(20)

Looking at the form of the solution v in (12), a scaling by b will simplify matters. In addition, it
is again advantageous to pass to the variables (Z, W) — (Z + W, Z — W). We combine both in
one change of variables. Namely, take

ro= e (b) + wi (b)), 2 = Wz (b) — wi (b)),
s1 = €M [ag(b) + wa(b)], s2 = € [za(b) — wa(b-)).
which allows us to rewrite the linearized system (15) in the form

1
2
51
52

(21) 12X+ 2uwI X +£LX =0, X =

with the same notations as in the Schrodinger eigenvalue problem (14), with the only exception
being that the parameter a is replaced by b. In other words,
2y 2 cos(0)

[y = 2= T

Thus, the eigenvalue problems under consideration will be in the form (14) and (21).

1.4. Main results. The next result gives stability /instability results for general dimension d > 1
for the PT symmetric Schrodinger model.

2 cos(6)
4 ' ' w—cos(0)
(ete=® g, e™tp), with ¢ given by (11). Then, ifp > 1+ %, the waves are spectrally unstable with
a real growing mode. In the remaining cases, assume that 1 <p <1+ %. Then,

. Consider the waves

Theorem 1. Let §,w be so that w > cos(0) and 1, = 1yp =

(1) If « > 1, then the waves are spectrally stable, if n > 0 and spectrally unstable with at least
one single real growing mode, if n € (—04,0).

(2) If a =1, then the waves are stable for all 7.

(3) If « € [0,1), then the waves are spectrally stable, if n > —o4, and unstable with a real
growing mode, if n € (0, —04,).

(4) If « € (—1,0) and n > —o4, then the waves are spectrally stable. If n € (0, —04), then
the waves are unstable. Iff n € (=\1(L_),0), then the waves are unstable with at least d
unstable real eigenvalues.

Some remarks are in order:

5O'a < 1, since Lo does not have embedded eigenvalues in oq4c(La) = [1,00)

6Here M(L-) = infyp=1:n14 (L-h,h) > 0 is the second smallest eigenvalue of L_, if any. If L_ does not
support any other eigenvalues beyond zero, A1 (L-) =1
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(1) The case n < —1 is a difficult one to investigate, in part due to the failure of the gap
condition, that is 0 € oegs. (J(L 4 71)). Several numerical studies in the one dimensional
case ([10, 1], see also [22]) predict that oscillatory instabilities will appear. On the other
hand, the only rigorous work that we are aware of, [22], establishes the appearance of a
single quartet of eigenvalues, in the limit n — —o0, again for d = 1. A natural outstanding
open question then is to show the instability of such waves in the higher dimensional
context d > 2, as well as the case n < —1, where || is not necessarily large.

(2) The case a = 1 presents itself as an interesting bifurcation point. It would be interesting
to see how the stability for all values of ) reconciles with the instabilities for various values
of nin the cases 1 +€ > a > 1 and 1 — e < a < 1. The results seem to suggest that there
is stability for example, if « € (1,14 ¢€) and € (=1, —04).

(3) Related to the previous point, it is unclear at this point, how to treat the cases o > 1 and
n € (—1,—04) as well as a € [0,1), n € (—1,0). It is expected that these configurations
will be unstable, but we are not able to use the index counting theories.

Our next result concerns the Klein-Gordon problem. Again, we provide some basic information
regarding the stability of the standing waves in the standard Klein-Gordon model. This will
provide the context in which we study the stability for these waves in the P7T situation. In order
to state the relevant stability results, we need to define

._ p—1
AT - —1)

forp>1,d>1landp <1+ %. Note that wy, 4 € (0,1), when p < 1+ %. Then, the waves e are
unstable for the Klein-Gordon model, if and only if 1+ % < p < Pmax Or otherwise 1 <p <1+ %
and |w| < wp 4, see also Proposition 1 below.

We are now ready for our main result concerning the eigenvalue problem (21).

Theorem 2. Let ¢ be given by (12) and w : w? < 1+ cos(d), m = QCZE(Q) = 1_i§f§z2(9). Then,

if 14+ % <p<pmax 071 <p<1+4 %, but |w| < wp 4, then the waves are unstable.
Assuming 1 <p <1+ %, lw| > wp 4, we have

(1) For a>1 andn > 0, the waves are stable, while for n € (—o4,0), the waves are unstable,
with a real growing mode.

(2) For o = 1, the waves are stable forn > —w?. Forn < —w
with eigenmodes in the form \/—(n+ w?) + iw.

(3) For a € [0,1) and n > —o4, then the waves are spectrally stable. If n € (0,—0y,), then
the waves are unstable.

(4) If « € (—1,0) and n > —o4, then the waves are spectrally stable. If n € (0, —04), then
the waves are unstable. If n € (=A1(L_),0), then the waves are unstable with at least d
positive real eigenvalues.

2 we have oscillatory instability

The open problems that we have outlined after Theorem 1 largely apply here. Interestingly,
the case o = 1 presents itself differently for the Klein-Gordon models.

2. SPECTRAL STABILITY OF STANDING WAVES FOR THE P7 SYMMETRIC SCHRODINGER
MODEL: PROOF OF THEOREM 1

As we have discussed in the introduction, we base our stability arguments on the Hamilton-
Krein index theory. Some elements of this approach were present in the early pioneering works
of Grillakis-Shatah-Strauss, [13, 11, 12] and Weinstein, [29], but we follow the more systematic
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approach developed by Kapitula-Kevrekidis-Sandstede [14, 15] (see also [16]) and alternatively
in [8].

2.1. Some basic Hamilton-Krein instability index theory. More precisely, for a self-adjoint
operator K with finitely many negative eigenvalues, consider an eigenvalue problem of the form

(22) JKf = uf.
where J* = —J, K* = K and some mild additional technical assumptions on J, K, which are
easily met in our case. Assume also SK = 0, meaning that K maps real-valued into real-valued
functions. One is interested in the “instabilities count” for the eigenvalue problem (22). In
other words, how many solutions are there (p, f), with f # 0,R%u > 0. One (almost immediate)
consequence of the form (22) is that if K > 0, then (22) has no instabilities.

Next, assume that Ker(K) is finite dimensional and let Ker(K) = span{y; : j =1,...,N},
where {wj}j.v: | are linearly independent. Assume also that J is invertible and J~'[Ker[K]] C

Ker[K]*. Introduce D = (Dij)iyj:l and D;; = <K*1[j*1[wi]],j*1wj> and assume that D is

invertible. Denoting the number of different solutions (f, u) : f € D(K),Ru > 0 by nunsmble(jK),
we have the relation

(23) nunstable(jK) + nnegativeKrein(jK) = n(K) - n(D))

where npegative Krein(j K) is an even number of marginally stable eigenvalues of (22) with negative
Krein signature. As an immediate consequence of (23), we have nypsape(JK) < n(K) — N(D)
and in addition, nunsmble(jK) > 1, if n(K)—n(D) is odd. In the particular case when n(K) = 1,
the eigenvalue problem (22) has exactly one real instability if all eigenvalues of the symmetric
matrix D are positive. Otherwise, D has exactly one negative eigenvalue and the eigenvalue
problem (22) is stable. We note that the non-solvability of (22) for specific ;1 means that the
operator JK — 1 is an invertible.

Another useful result is an easy corollary of Remark 3.1 in [14], which has appeared earlier

in [11]. Tt states that if the eigenvalue problem (22) is in the form J = < _01 [1) > VK =

< Ly 0 ), with D > 0 and Ker[K]| = {0}, then one has

0 Lo
(24) Nreal instavitities(JK) > [n(L2) — n(L1)|.
2.2. Proof of Theorem 1. In this section, we prove Theorem 1. We work with the eigenvalue
problem (14). Since J 1= -7, we can rewrite it as
L£X = —uJ X.

. . . L2 Y
Next, we exploit the upper triangular structure of £. More specifically, letting X = < 7 ), we

have the system

(25) LY +TJZ =—-uJY
(26) (L+nId)Z = —pJZ.
The first equation can be rewritten’, using J? = —Id,

(27) (JL—pn)Y =TZ.

"From this point on, for the brevity of the notation, we will drop the Id from our operator notations. Namely
whenever we write 1" 4 u, where 7' is an operator and p is a scalar, we mean 17"+ uld
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One immediately recognizes that the associated homogeneous eigenvalue problem
(28) JLYo = nYo,

is exactly the eigenvalue problem for the solitary wave ¢ as a solution to the standard semi-linear
Schrodinger equation. We claim that this immediately implies instability for (25), (26), if we
have started with an unstable wave ¢ for the ordinary Schrodinger system, that is for p > 1 + %.

Indeed, if p > 1 + %, it is known that one has a real simple instability, say uo > 0. That
is, there is Yy # 0, so that (JL — puo)Yo = 0. Clearly then, Z = 0, Yo and u = po provide a
non-trivial solution of (25), (26), whence instability is established.

Assume now that 1 < p < 1+ %. From the (spectral) stability of the solitary wave for the
standard Schrédinger model, it follows that JIL — p is invertible, whenever u ¢ iR!. So, take
p ¢ iR'. We can solve (27) (or equivalently (25)) by using the formula

(29) Y =D(JL — p)~1[Z].

Thus, it remains to concentrate on the study of the eigenvalue problem (26), which is only in
terms of Z. If (26) has a non-trivial solution Z for some u ¢ iR!, we conclude instability® and
stability otherwise. Again, applying J on both sides of (26), matters are reduced to

(30) J(L+n)Z = pZ.

The eigenvalue problem (30) is mostly amenable to the methods of the Hamilton-Krein index
theory, as explained in Section 2.1. To that end, note that J* = —.J, while L + nld is a self-
adjoint, bounded from below operator. We should mention here that an eigenvalue problem in
the form (30) was already considered, in the work of Pelinovsky, [21]. Herein, we chose instead to
follow the simpler approach outlined in Section 2.1. The reason is that in all cases? the definite
predictions can be obtained by either method, while in the inconclusive cases, both approaches
fail to produce a definite result.

Let @ > 1, so 04 > 0. Then, L, > o,1Id. Clearly, if n > 0, we have spectral stability due to
the fact that L +7 > 0. If § € (—04,0), we have that n(L +7) = 1, whence by (23), we conclude
instability, with a single real eigenvalue. The case n € (—o00, —0,) is open, since our method is
inconclusive for this configuration.

For v = 1, we have L, = L_, so the eigenvalue problem (30) reduces to

(L-+n)z1 = —pzo
(L_ +1n)z2 = pz1.

This is equivalent to (L_ + 1)%2; = —u?21, whence pu € iR}, since (L_ + n)? > 0. This implies
stability for all values of 7.

For a € (0,1), we have 04 : 0pq < 04 < 0. Clearly, for n > —o,, we have L +n >0, hence
stability. For n € (0, —04), n(L + 1) = 1, hence instability, with a positive growing mode. The
case nn < 0 is open, as our approach does not give a definite prediction about the stability. The
case o = ( is covered by the same argument, once we observe that L, = Ly and o, = 0 4.

If & € (—1,0) and n > —0,, we have again L + 1 > 0, hence stability. If n € (0, —0,), we
clearly have L_ +n > 0, while n(L,) > 1. By formula (24) (here n(D) = 0), we conclude an
instability. If finally, n € (—A1(L_),0), we have n(Ly +n) > d+ 1, while n(L_ +7n) = 1, we
conclude by (24) (here again n(D) = 0) that the number of real unstable eigenvalues is at least
d+1-1=d.

8
9

since we can then solve for Y based on (29)
except in the cases covered by (24), which may also be concluded by the results in [21]
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3. CHARACTERIZATION OF THE SPECTRAL STABILITY OF THE STANDING WAVE SOLITARY
WAVES IN THE KLEIN-GORDON CASE

We are now considering the eigenvalue problem (21). Introduce the auxiliary variables X =

< }Z/ > In terms of Y, Z, we have the following linearized system

31) { p2Y + 2uwJY + LY = —-T4,JZ

W27+ 2uwdZ + (L +m)Z =0

Before we continue with our spectral analysis of (31), let us discuss the stability of the standing
waves in the context of the standard Klein-Gordon system. This will have implication for the
stability of the P7T variant of the problem, namely about the existence of eigenvalues for the
spectral problem (31).

3.1. The eigenvalue problem for the standard linearized Klein-Gordon equation at the
ground states. We revisit the results, which first appeared in the works of Grillakis, Shatah and
Strauss, [11], [12], [13], [25], [26], [27]. More precisely, for the Klein-Gordon problem, p € (1, pmax)

(32) ug — Au+u — |ulP~lu = 0,2 € R
we have ground state solutions in the form w4 = ei‘”tapw,p(x), where

—Apypd+(1— W2)90w7p,d - QOZ,p,d = 0.

By the uniqueness result (presented in the discussion after (10)), ¢,, 4 can be written as follows

1
Pupd(r) = (1— 0‘)2)”71 ©pd(V1—w?x),

where ¢, 4 is the unique solution of (10). The question for stability of these waves is of course
similar to the one deduced in (20). It reduces to the question of existence of A : ®A > 0 for which

(33) NE 4 2 \wJE + LT = 0.
for some 0 # & € D(L). Then, it is well-known ([11], [12], [13], [25], [26], [27]) that

Proposition 1. The linearized problem (33) is

e unstable, if 1 + % < p < Pmax-
o unstable, if 1 <p <142 and 0 < |w| < wpgq.
o stable, if 1 <p < 1+% and |w| > wp q.

In all cases, the instability presents itself as a simple positive eigenvalue.
Note: The stability claim is equivalent to the unique solvability of the problem
(34) (A2 +2) ]+ L)j =R,

for all R € L? x L? for all A : R\ > 0. In particular, stability for (33) means that (34) with
R = 0 implies y = 0. On the other hand, instability means that for R = 0, we have a non-trivial
solution y # 0 of (34). Similar to our earlier remarks for (22), if L > 0, we have stability for the
pencil (34). Now that we have fully described the stability for (33), we are ready to analyze (31).
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3.2. Spectral analysis of (31). Our first observation covers the instability cases for (33).
Roughly speaking, if the wave is unstable for the standard Klein-Gordon equation - then it
will be unstable for the PT version as well.

Proposition 2. The waves (¢“te™), ™)) are unstable if

o 1+ % < P < Pmax
e 1<p<1l+7 and|w| <wpg.
Proof. In this cases, we know that (33) is unstable. Thus, take Z = 0 and then (po, Yp) : Yo # 0
to be the solution of
1Yy 4 2uwJYy + LYy = 0.
Such a solution, with p > 0 exists, according to the instability of (33). O

Thus, it remains to consider the case, when (33) is actually stable. That is, let p € (1,1 + %)
and |w| > wp 4 and we consider the eigenvalue problem

(35) W27 4 2uwJZ + (L +n)Z = 0.

In many cases below, it will be beneficial to rewrite the eigenvalue problem (35) in the equivalent
form

w (5 ) (1) () =)

where u = Z,v = uZ.

For a > 1 and n > 0, we have that L+ 7 > 0, and thus, one concludes stability for (37), hence
(35). Also, if n € (—04,0), we have n(L+7) = 1, whence instability. For the case n € (—00, —04),
our method is inconclusive.

We now analyze the case @« = 1. We have again the special situation, L, = L_. The eigenvalue

problem (35) can be considered in the variables Z = ( g > We have

(L4 n+p2)f = —2p0g

(L-+n+p)g =2 f.
whence we arrive (by applying (L_ + n + p?) to the second equation ) to
(37) (Lo +n+p?)?f = -4 f.
From this, it is immediately clear that 1 cannot be a real number, different than zero. Rewrite
(37) in the form

(L_ 40+ p? + 2ipw)(L_ + 1+ p® — 2ipw)f = 0.
But this is only impossible, if either (L_ +n+pu? —2ipw)f =0, f # 0 or (L_+n+pu?4+2ipw)h = 0,
where h = (L_+n+p?—2iuw) f # 0. So, let u = a+ib and suppose that (L_+n+pu?+2iuw)h = 0.
Since L_ is self-adjoint, this last equality is possible if —(n + p? + 2iuw) is in the spectrum of
L_, so in particular it is real. But
p? + 2ipw = (a® — b% — 2bw) + 2ia(b + w)

which implies that b = —w and —(n+a? +w?) € 0, (L_). But this means that if —(n+w?) <0,
then for every a, we will have —(n + a? + w?) < 0, hence outside of o,, (L_). Conversely, if
—(n 4+ w?) > 0, there would be a # 0, namely a = \/—(n + w?), so that —(a®? + n+w?) =0 €
op.p.(L_), hence instability. The other possibility, (L +n+p? —2iuw)f = 0, f # 0 is investigated
in a similar manner, with the same conclusion, leading to eigenmode \/—(n + w?) + iw. This
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establishes the final result in the case a = 1, which is that there is stability in the case > —w?

and instability when 1 < —w?.

For o € [0,1), the problem is considered in view of (18). If n > —o4, L +a > 0 and we have
stability. If € (0, —04), n(L 4+ &) = 1 and there is instability.

The case a € (—1,0) and 7 > —o, has L + « > 0, hence stability. For n € (0,—04),
n(L+a) = 1, whence instability. For n € (—\1(L_),0), we may argue similarly to the Schrédinger
case. Indeed, n(Ly+n) > d+ 1, while n(L_ 4n) = 1, we conclude by (24) (here again n(D) = 0)
that the number of real unstable eigenvalues is at least d +1 — 1 = d.
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