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Abstract

We consider the dispersion managed nonlinear Schrödinger equation (DMNLS) in the case of
zero residual dispersion. Using dispersive properties of the equation and estimates in Bourgain
spaces we show that the ground state solutions of DMNLS are smooth. The existence of smooth
solutions in this case matches the well-known smoothness of the solutions in the case of nonzero
residual dispersion. In the casex ∈ R2 we prove that the corresponding minimization problem
with zero residual dispersion has no solution.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and main result

Our work is motivated by the study of parametrically excited NLS with periodically
varying dispersion coefficient

iut + D(t)uxx + C(t)|u|2u = 0,
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which arises as an envelope equation in the problem of an electromagnetic wave propa-
gating in an optical waveguide. The balance between the dispersion and the nonlinearity
in this equation is the key factor that determines the existence of stable pulses. In the
last decade, a technique that uses fibers with alternating sections having opposite dis-
persion was introduced. This technology, called dispersion management, proved to be
incredibly successful in producing stable, soliton-like pulses. The idea is to use rapidly
varying dispersion with approximately zero mean and small nonlinearity in hope that
the balance between the small residual dispersion and the small nonlinearity will pro-
duce a soliton-like solutions. There have been an enormous amount of technological
advances in this direction with an array of numerical and phenomenological explana-
tions and a recent theoretical understanding of the strong stability properties of the
dispersion managed (DM) systems. The envelope equation that describes the propa-
gation of electromagnetic pulses in optical fibers in the regime of strong dispersion
management, derived by Gabitov and Turitsyn in 1996[6,7] is a nonlinear Schrödinger
equation with periodically varying coefficients. After rescaling the equation takes the
form

iut + d(t)uxx + ε(|u|2u + �uxx) = 0, (1)

where t is the propagation distance,x is the retarded time andd(t) is the mean-zero
component of the dispersion, see[17]. Note that the average dispersion and nonlinearity
are small compared to the local dispersion, which is a characteristic feature of the strong
dispersion management. Performing Van der Pol transformation in (1) and averaging in
the Hamiltonian we obtain the averaged variational principle

〈H 〉 = ε

∫ +∞

−∞

∫ 1

0

(
�|vx |2 − 1

2
|T (t)v|4

)
dx dt (2)

with the corresponding Euler–Lagrange equation (averaged), see[1,7]

ivt + ε�vxx + ε〈Q〉(v, v, v) = 0, (3)

where

〈Q〉(v1, v2, v3) =
∫ 1

0
Q(v1, v2, v3, t) dt.

Here T (t) is the fundamental solution ofiut + d(t)uxx = 0 and

Q(v1, v2, v3, t) = T −1(t)(T (t)v1T (t)v2T (t)v3).

In [17] the existence of ground state solution for the averaged equations is proved, as
well as an averaging result, which guarantees the existence of nearly periodic stable
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pulses, see also[4]. The ground state of the averaged equation exists as a solution of
the constrained minimization problem

P� = inf

{
E(v) = 〈H 〉(v), v ∈ H 1,

∫ +∞

−∞
|v|2dx = �

}
. (4)

This result is for the case of positive average dispersion� and using bootstrapping
procedure it is shown that the minimizer is smooth in this case. The variational problem
in the case of zero-average dispersion is more subtle due to the absence of a priori
bounds in spaces different fromL2. In this case the functional is formally the singular
perturbation limit� → 0 of (4), see[11,17]. In [10] the corresponding minimization
problem

P� = inf

{
�(u), u ∈ L2,

∫ +∞

−∞
|u|2 dx = �

}
, (5)

where�(u) = − ∫ 10 ∫ +∞
−∞ |eit�2x u(x)|4 dx dt has been studied. Byeit�

2
x we denote the

semigroup generated by the free Schrödinger equation in one dimension, i.e.u(t, x) =
(eit�

2
x u0)(x) solves

iut + uxx = 0, u(0, x) = u0(x).

Exploring the dispersive properties of the Schrödinger evolution and using Lion’s con-
centration compactness inL2, the existence of a minimizeru ∈ L2 ∩ L∞ has been
derived.
In the current paper, we follow the same idea as in[10], but make use of Bourgain

spacesXs,b to simplify the proof and show that the existing minimizeru is smooth.
More precisely, we prove the following theorem.

Theorem 1. The minimization problem(5) has a solutionu ∈ C∞ ∩ L2.

It is interesting to study the two-dimensional casex ∈ R2, which is physically
relevant sincex is the coordinate of the sections orthogonal to the fiber andt is the
distance along the fiber. In this case the corresponding model is the variable coefficients
nonlinear Schödinger equation in two-space dimensions

iut + d(t)�u + c(t)|u|2u = 0. (6)

The results in[17] transfer to the two-dimensional case. There exists a solution for
every �, � > 0 of the corresponding variational problem

min

{
�
∫

R2
|∇u|2 dx − 1

2

∫ 1

0

∫
R2

|U(t)u|4 dx dt : u ∈ H1,

∫
R2

|u|2dx = �
}
. (7)
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More recently Kunze in[12] has shown that again in the case of nonzero residual
dispersion the functional

�(u) = 1

2

∫
R2
(|∇u|2 + |u|2) dx −

∫ 1

0

∫
R2

|U(t)u|4 dx dt, u ∈ H1, (8)

where U(t)u0 = eit�u0 is the evolution operator of the free Schrödinger equation
admits a sequence(uj ) ⊂ H1 of critical points such thatuj are radially symmetric and
|uj |H1 → ∞ as j → ∞. Here � �= 0 is taken equal to 1 without loss of generality
and the constraint‖u‖L2 = 1 is included in the functional. In[10] the author posed
the problem about the existence of a constrained minimizer for the functional

�(u) = −
∫ 1

0

∫
R2

|U(t)u|4 dx dt, u ∈ L2 (9)

in the two-dimensional casex ∈ R2. In the next theorem we give negative answer to
this question.

Theorem 2. In R2 a solution of the constrained minimization problem

P = inf

{
�(u) = −

∫ 1

0

∫
R2

|U(t)u|4 dx dt, u ∈ L2, ‖u‖L2 = 1

}

does not exist.

Note that the questions above are related with the question of existence of a maxi-
mizer and an exact constant in the Strichartz inequality

‖u‖Lp(Rn+1)�S‖f ‖L2(Rn), p = 2+ 4/n,

wheneveru(t, x) is a solution of the equationi�t u = �u with initial data u(0, x) =
f (x). In this case the integral int is over the infinite interval(0,∞). It has been shown
by Kunze [13] that maximizing function exists in the casen = 1, p = 6. Recently, in
[5] Foschi was able to explicitly construct maximizers when the exponentp is an even
integer. In the cases of interest for us,n = 1 and 2, the exact constants are given as
well as the form of the smooth maximizing functions. Note that we show that for the
casen = 2 with integration int over the finite interval(0,1) the maximizer does not
exist.
Another case of interest is to consider a one-dimensional NLS with quintic nonlin-

earity

iut + uxx + |u|4u = 0,
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which arises if the electromagnetic field is so strong that higher order nonlinearity
can not be neglected. If we introduce dispersion management with rapidly varying
dispersion the corresponding model is given by

iut + d(t)uxx + |u|4u = 0.

In [17] the authors follow the averaging procedure to produce the equation

ivt + �vxx + bQ5(v, v, v, v, v) = 0,

where Q5(v1, v2, v3, v4, v5, t) = T −1(t)(T (t)v1T (t)v2T (t)v3T (t)v4T (t)v5) with the
averaged Hamiltonian

〈H 〉 =
∫ 1

0

∫ +∞

−∞

(
�|vx |2 − 1

2
|T (t)v|6

)
dx dt.

A solution v ∈ H 1 of the constrained minimization problem

P� = inf

{
E(v) = 〈H 〉(v), v ∈ H 1,

∫ +∞

−∞
|v|2 dx = �

}
when � �= 0 was found in[17]. We prove the following:

Theorem 3. In R1 a solution for the constrained minimization problem

P = inf

{
�(u) = −

∫ 1

0

∫ ∞

−∞
|T (t)u|6 dx dt, u ∈ L2,

∫ +∞

−∞
|u|2 dx = 1

}
does not exist.

2. Proof of Theorem 1

Introduce the Bourgain spacesXs,b [2,3] as the set of all functionsu with∫
|û(�, �)|2〈� − |�|2〉2b〈�〉2s d� d� < ∞,

where 〈�〉 := (1 + |�|2)1/2 and 〈� − |�|2〉 := (1 + |� − |�|2|2)1/2 and û(�, �) is the
time–space Fourier transform. We also introduce the spaceX−

s,b as

X−
s,b :=

{
u :
∫

|û(�, �)|2〈� + |�|2〉2b〈�〉2s d� d� < ∞
}
.
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Note thatXs,b spaces are Hilbert spaces with norm

‖u‖Xs,b
=
∫

|û(�, �)|2〈� − |�|2〉2b〈�〉2s d� d�

and that‖u‖Xs,b
= supv∈X−

−s,−b

∫
uv dx dt . Thus v ∈ X−

s,b if and only if v ∈ Xs,b. We

include the following well-known lemma for convenience next.

Lemma 4. Let � ∈ C∞
0 (R1), supp� ⊂ (−1,1). Then,

(1)
∥∥∥�(t)eit�2x u0∥∥∥

Xs,b

�Cb‖u0‖Hs ;

(2) ‖u‖L∞
t H s

x
�Cε‖u‖Xs,1/2+ε

.

Proof. To prove (1), compute the Fourier transform of the left-hand side

F(�(t)eit�
2
x u0)(�, �) = �̂(� − |�|2)û0(�).

Thus ∥∥∥�(t)eit�2x u0∥∥∥
Xs,b

�
∫

|�̂(� − |�|2)|2|û0(�)|2〈� − |�|2〉2b〈�〉2s d� d�.

Then (1) follows from
∫ |�̂(� − |�|2)|2〈� − |�|2〉2b d��Cb.

For part (2) since‖u‖L∞
t L2

x
�
∥∥û∥∥

L2
�L

1
�
we have

‖u‖2
L∞
t H s

x
�
∫ (∫

|û(�, �)| d�
)2

〈�〉2s d�

�
∫ (∫

|û(�, �)|2〈� − |�|2〉1+2ε d�
)
.

(∫
d�

〈� − |�|2〉1+2ε

)
〈�〉2s d�

� Cε‖u‖2Xs,1/2+ε
. �

We will need to use the following lemma[15, p. 21] on the smoothing effect of the
Duhamel operator on the spaceXs,b, see also[14].

Lemma 5. Let � be a smooth characteristic function of the interval[−1,1]. Then for
any ε > 0 ∥∥∥∥�(s) ∫ s

0
ei(s−t)�2xF (t) dt

∥∥∥∥
Xs,1/2+ε

�‖F‖Xs,−1/2+2ε .
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Next, we introduce the Littlewood–Paley decomposition. Let� ∈ C∞
0 (R1) and

�(�) = 1 if |�|�1 and�(�) = 0 if |�| > 2. Define the function�(�) = �(�)− �(2�).
Then

�(�) +
∞∑
k=1

�(2−k�) = 1

for every � ∈ R, � �= 0. Define the Littlewood–Paley operators as

P̂kf (�) = �(2−k�)f̂ (�)

and

P̂0f (�) = �(�)f̂ (�) ∼ �[−1,1](�)f̂ (�).

Note thatP̂kf (�) �= 0 only if 2k−1� |�|�2k+1.
Let Pk−5<.<k+5 be the operator

Pk−5<.<k+5 =
i=5∑
i=−5

Pk+i .

For simplicity we will denoteuk = Pku and uk−5<.<k+5 = Pk−5<.<k+5u from now
on.
We will use the following main theorem, the proof of which will be given in the next

section. In this theorem and in what follows,L2-norms will refer to spatialL2
x-norms

unless specifically stated otherwise.

Theorem 6. For every l > 0

‖Pl(〈Q〉(u))‖L2�C(2−l(1/2−10ε)‖u‖3
L2 + ‖ul−5<.<l+5‖3L2)

with C independent of l and smallε > 0.

Remark. The estimate in Theorem6 can be improved to

‖Pl(〈Q〉(u))‖L2�C(2−l(1/2−10ε)‖u>l−2‖L2‖u‖2
L2 + ‖ul−5<.<l+5‖3L2).

We will postpone the proof of this theorem and discuss the minimization problem
instead. We want to minimize

�(u) = −
∫ 1

0

∫ +∞

−∞
|eit�2x u(x)|4 dx dt
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subject to‖u‖L2 = �. But if we choosev(x) = u(x)√
�

then ‖v(x)‖L2 = 1 and�(u) =
�(

√
�v) = �2�(v) we see that it is enough to consider the minimization problem

P1 = inf {�(u) : u ∈ L2, ‖u‖L2 = 1}.

By Ekeland’s principle, we can choose the minimizing sequence{um} in such a way
that

P1u
m + 〈Q〉(um) → 0 in L2.

Thus we have the following problem:∥∥um∥∥
L2 = 1,

�(um) → inf‖um‖
L2=1

�(u),

gm = P1u
m + 〈Q〉(um) → 0. (10)

Definition 7. Fix 	 > 0 and {um} with ‖um‖L2 = 1. We say thatl is an exceptional
frequency for{um} if ∥∥uml−5<.<l+5

∥∥
L2 �	 for all m.

Proposition 8. There exist finitely many exceptional frequencies. Also, there exists a
finite set A of frequencies and a subsequence such that wheneverl /∈ A there exists
m = m(l) such that

∥∥uml−5<.<l+5

∥∥
L2 �	 for all m�m(l).

Proof. It is clear by the definition that the number of exceptional frequencies cannot

exceed
10

	2
. To construct the setA and the corresponding subsequence, take all the

exceptional frequencies for{um} and call that setA. If l /∈ A there exists an infinite
subsequence{umk } such that

∥∥umk

l−5<.<l+5

∥∥
L2 < 	. To this subsequence apply the same

procedure for the nextl′ /∈ A, etc. In the end, take the diagonal subsequence which
will satisfy the condition. �

Consider now the setN \ A of frequencies. We have that for everyl ∈ N \ A and
everym > m(l)

P1
∥∥uml ∥∥L2 − ∥∥gml ∥∥L2 �

∥∥P1u
m
l − gml

∥∥
L2 = ∥∥Pl(〈Q〉(um))∥∥

L2

� C2−l(1/2−10ε)
∥∥um∥∥3

L2 + C
∥∥uml−5<.<l+5

∥∥3
L2

� C2−l(1/2−10ε) + C	2

 5∑
i=−5

∥∥uml−i

∥∥
L2

 .
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Dividing through byP1 and renaming the constants gives us

∥∥uml ∥∥L2 − c
∥∥gml ∥∥L2 �C2−l(1/2−10ε) + C	2

 5∑
i=−5

∥∥uml−i

∥∥
L2

 .

Recall now that
∥∥gml ∥∥L2 → 0 and that by the result of[10], we haveuml → ul in L2.

Taking limit in m in the last inequality yields

‖ul‖L2 �C2−l(1/2−10ε) + C	2

 5∑
i=−5

‖ul−i‖L2


for every l /∈ A. Taking sufficiently big constantC will ensure that these inequality
will remain true for l ∈ A, since that set is of finite cardinality.
Let al = ‖ul‖L2. In terms ofal the last estimate reads

al �C2−l(1/2−10ε) + C	2(al−5 + · · · + al+5),

We have the following lemma.

Lemma 9. Let 
 > 0. Then there exists a constant�0 = �0(
), so that whenever
0 < � < �0, the sequenceal ∈ l2 and 0 < al �C2−l
 + �(al−5 + · · · + al+5), for all
positive integers l, one has

ak�Cε,
(1+ ‖{al}‖l2)2−k


for all k > 0.

We include the proof of the lemma in the appendix. Assuming its validity, we get by
choosing an appropriate small	 > 0 such that‖ul‖L2 �C2−l(1/2−11ε). For sufficiently
small ε we have the estimate‖ul‖L2 �C2−l/3. According to the Remark after Theorem
6 we have

‖ul‖L2 = ‖Pl(〈Q〉(u))‖L2 �C2−l/32−l/3 + C(2−l/3)3�C2−2l/3.

This gives alreadyu ∈ H 2/3− and shows that by iteration one can prove that the
solution u is actually smooth, i.e.u ∈ C∞.
Interestingly, to prove thatum → u in L2, Kunze has shown that the only possible

case is when the sequence{ûm} is tight. Using our arguments, we are in fact showing
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something more, namely∫
|�|�R

|ûm(�)|2�
∑

l:2l �R

∥∥uml ∥∥2L2�
∑

l:2l �R

1

22l(1/2−10ε)
� 1

R1−20ε .

which implies the tightness of{ûm}.

3. Proof of Theorem 6

In this section, we will give the proof of Theorem6. To do this, we need to introduce
a dyadic decomposition in the “variable”� − |�|2, i.e.

û(�, �) =
∞∑
j=0

�(2−j (� − |�|2))̂u(�, �) + �(2(� − |�|2))̂u(�, �)

and denote

̂�j u(�, �) = �(2−j (� − |�|2))û(�, �) = ûj

and

̂�0u(�, �) = �(2(� − |�|2))û(�, �) = û0.

Then

‖u‖X0,b ∼
 ∞∑
j=0

22jb
∥∥�j (u)

∥∥2
L2

1/2

for b > 1
2.

Next, we estimate the norm of the projectionPl of the quantity

〈Q〉(u) =
∫ 1

0
T −1(t)(T (t)uT (t)uT (t)u) dt

in the Sobolev spaceHs . Take a smooth cutoff function�(q) adapted to the interval
(0,1) (following an idea of Kunze). Then

‖Pl(〈Q〉(u))‖Hs =
∥∥∥∥Pl (∫ 1

0
e−it�2x (|eit�2x u|2eit�2x u) dt

)∥∥∥∥
Hs

� sup
0�q�1

∥∥∥∥∫ q

0
ei(q−t)�2xPl(|eit�

2
x u|2eit�2x u) dt

∥∥∥∥
Hs
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�
∥∥∥∥�(q) ∫ q

0
ei(q−t)�2xPl(|eit�

2
x u|2eit�2x u) dt

∥∥∥∥
L∞
t H s

x

�
∥∥∥∥�(q) ∫ q

0
ei(q−t)�2xPl(|eit�

2
x u|2eit�2x u) dt

∥∥∥∥
Xs,1/2+ε

.

Lemma5 implies that

‖Pl(〈Q〉(u))‖L2 �
∥∥∥Pl(|eit�2x u|2eit�2x u)

∥∥∥
X0,−1/2+2ε

.

Thus we need to estimate in the spaceX0,−1/2+2ε and we will use different estimates
in the case when all the frequencies are almost the same (harder) and in the case when
the frequencies are different. We do this according to the following lemma.

Lemma 10. Let 0 < ε be a sufficiently small number(ε < 1/20 will do). Let u, v,w
be sufficiently smooth(test) functions. Then
If any two frequencies do not match(that is max(i, j, k, l) − min(i, j, k, l) > 5), we
have

∑
max(i,j,k,l)−min(i,j,k,l)>5

∥∥Pl(ui v̄jwk)
∥∥
X0,−1/2+2ε

�2−l(1/2−ε)‖u‖X0,1/2+ε‖v‖X0,1/2+ε‖w‖X0,1/2+ε .

In the case, when all frequencies are almost the same(i, j, k ∼ l),

∥∥∥∥∥∥
∑

(i,j,k): max(i,j,k,l)−min(i,j,k,l)�5

Pl(ui v̄jwk)

∥∥∥∥∥∥
X0,−1/2+2ε

�
∥∥ul−5� ·<l+5

∥∥
X0,1/2+ε

∥∥vl−5� ·<l+5
∥∥
X0,1/2+ε

×∥∥wl−5� ·<l+5
∥∥
X0,1/2+ε .

In both cases, the sum is over all nontrivial frequencies, that is min(i, j, k, l)�0.

We postpone the proof of Lemma10 for the appendix in order to finish the proof
of Theorem6.

‖Pl(〈Q〉(u))‖L2 �
∥∥∥Pl(|eit�2x u|2eit�2x u)

∥∥∥
X0,−1/2+2ε

.
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Denoteũ = eit�
2
x u and use Lemma10 to get∥∥∥Pl(|ũ|2ũ)
∥∥∥
X0,−1/2+2ε

�
∑

max(i,j,k,l)−min(i,j,k,l)>5

∥∥∥Pl(ũi ˜̄uj )ũk∥∥∥
X0,−1/2+2ε

+
∥∥∥∥∥∥

∑
max(i,j,k,l)−min(i,j,k,l)�5

Pl(ũi ˜̄uj ũk)
∥∥∥∥∥∥
X0,−1/2+2ε

� 2−l(1/2−ε)‖ũ‖3
X0,1/2+ε + ∥∥ũl−5� ·<l+5

∥∥3
X0,1/2+ε

� 2−l(1/2−ε)‖u‖3
L2 + ∥∥ul−5� ·<l+5

∥∥3
L2,

which is Theorem6. In the last inequality, we have used Lemmas4 and 10.
Note that in the sums above max(i, j, k)� l − 2 and hence we have the improved

estimate

‖Pl(〈Q〉(u))‖L2�C(2−l(1/2−10ε)‖u>l−2‖L2‖u‖2
L2 + ‖ul−5<.<l+5‖3L2).

4. Two-dimensional dispersion managed nonlinear Schrödinger equation
(DMNLS)

In this section, we will give the short proof of Theorem2. First, denote

I (T ,�) =
(∫ T

0

∫
R2

|eit��|4 dx dt
)1/4

and C(T ) = sup‖�‖
L2=1 I (T ,�). We will show thatC(1) is not achieved, which is

equivalent to the statement of Theorem2.
The Strichartz estimate

‖eit��‖L4 =
(∫ ∞

0

∫
R2

|eit��|4 dx dt
)1/4

�c‖�‖L2

for some constantc > 0 gives that

C(∞) < ∞.

It is clear also thatC(T ) is an increasing function ofT andC(T )�C(+∞). Next, we
will show that

lim
T→+∞C(T ) = C(∞).
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Indeed, there exists for eachε > 0 a function� ∈ L2, ‖�‖L2 = 1 such thatI (∞,�) >
C(∞) − ε. For that� there existsT0 = T0(�) such that for allT > T0 we have

C(T ) �
(∫ T

0

∫
R2

|eit��|4 dx dt
)1/4

�
(∫ ∞

0

∫
R2

|eit��|4 dx dt
)1/4

− ε�C(∞) − 2ε.

Thus limt→∞ C(T ) = C(∞).

Lemma 11. For everyT > 0 we have thatC(T ) = C(1).

Proof. The functionalI (T ,�) scales as follows:

I (T ,�) = I (1,
√
T�(

√
T .)).

Thus

C(T ) = sup
‖�‖

L2=1
I (T ,�) = sup

‖�‖
L2=1

I (1,
√
T�(

√
T .)) = sup

‖�‖
L2=1

I (1,�) = C(1)

since‖�‖L2 = ‖�‖L2 = 1. �

Suppose now that there exists function� such that

I (1,�) =
(∫ 1

0

∫
R2

|eit��|4 dx dt
)1/4

= C(1).

Then

C4(∞) � I4(∞,�) =
∫ ∞

0

∫
R2

|eit��|4 dx dt

�
∫ 1

0

∫
R2

|eit��|4 dx dt +
∫ ∞

1

∫
R2

|eit��|4 dx dt

= C4(1) +
∫ ∞

1

∫
R2

|eit��|4 dx dt.

Thus
∫∞
1

∫
R2 |eit��|4 dx dt = 0 and

∫
R2 |eit��|4 dx = 0 for almost everyt. There

exists t0 such that for every ballB(0, R) ∈ R2 ∫
B(0,R) |eit0��|4 dx = 0. Then by
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Hölder we have that for allR > 0

∫
B(0,R)

|eit0��|2dx�
(∫

B(0,R)
|eit0��|4 dx

)1/2(∫
B(0,R)

dx

)1/2
= 0.

Thus
∫

R2 |eit0��|2 dx = ∫
R2 |�|2 dx = 0, which is a contradiction with‖�‖L2 = 1.

5. One-dimensional quintic DMNLS

We will prove Theorem3 here. As before, denote

I (T ,�) =
(∫ T

0

∫ ∞

−∞
|eit�2x�|6 dx dt

)1/6

andC(T ) = sup
‖�‖

L2=1
I (T ,�).

C(∞) < ∞

is given again by the Strichartz estimate in one dimension,

‖eit�2x�‖L6 =
(∫ ∞

0

∫ ∞

−∞
|eit�2x�|6 dx dt

)1/4
�c‖�‖L2.

We have thatC(T ) is an increasing function ofT with

lim
T→+∞C(T ) = C(∞).

Using the same argument with different scaling

I (T ,�) = I (1, T 1/4�(
√
T .))

we can show thatC(T ) = C(1) for every T > 0. Now if we assume that there exists
function � such that

I (1,�) =
(∫ 1

0

∫ ∞

−∞
|eit�2x�|6 dx dt

)1/6
= C(1),

we will get a contradiction with‖�‖L2 = 1 as above.
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Appendix

The proof of Lemma9 is rather standard and should be available in some form
in the literature, but since the author is unaware of such reference, we include it for
completeness.

Proof of Lemma 9. For convenience letal = 0 for all l�0. For fixed positive integer
k, sum both sides inl�k to get

dk :=
∑
l�k

|al |2
1/2

�C
2
−k
 + C�

 ∑
l�k−5

|al |2
1/2

�C
2
−k
 + C�dk−5.

This is a well-defined sequence, since{al} ∈ l2. Iterate the inequality above to get

dk � C
2
−k
 + C�(C
2

−(k−5)
 + C�dk−5)� · · ·

� C


( ∞∑
s=0

(C�25
)s
)
2−k
 + (C�)[k/5].max(d0, . . . , d5).

The sum ins is estimated by(1−C�25
)−1, providedC�25
 < C�025
�1, which we
require. We also require that(Ck)1/5�(Ck0)

1/5�2−
. Finally, observe thatdk�‖{al}‖l2.
It follows that

|ak|�dk�C
,�(1+ ‖{al}‖l2)2−k
. �

Next, we will show Lemma10.

Proof of Lemma 10. For the proof of Lemma10, we rely on the following bilin-
ear estimates of Tao. Namely, in the case of one spatial dimension, it is proved in
Proposition 11.1 in[16] that

∥∥�L1(ui)�L2(vj )
∥∥
L2

�L
1/2
1 min(L2,2j+i )1/2

2max(i,j)/2
∥∥�L1(ui)

∥∥
L2

∥∥�L2(vj )
∥∥
L2 if |i − j |�3 (11)

and

∥∥�L1(ui)�L2(vj )
∥∥
L2�L

1/2
1 L

1/4
2

∥∥�L1(ui)
∥∥
L2

∥∥�L2(vj )
∥∥
L2 if |i − j | < 3. � (12)
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Let us show how (11) and (12) imply Lemma10.
Observe first that

∥∥uivj∥∥L2 �‖ui‖X0,1/2+ε

∥∥vj∥∥X0,1/2+ε . (13)

Indeed, this follows by decomposingui = ∑
�L1(ui) vj = ∑

�L2(vj ) and applying
(11) and (12):

∥∥uivj∥∥L2 �
∑

L1,L2�1,dyadic

(L1)
1/2(L2)

1/2
∥∥�L1(ui)

∥∥
L2

∥∥�L2(vj )
∥∥
L2

�

∑
L1�1

(L1)
1+ε

∥∥�L1(ui)
∥∥2
L2

1/2 ∑
L2�1

(L2)
1+ε

∥∥�L2(vj )
∥∥2
L2

1/2

� ‖ui‖X0,1/2+ε

∥∥vj∥∥X0,1/2+ε .

Note also that since‖uv̄‖L2 = ‖uv‖L2 we have that
∥∥ui v̄j∥∥L2 �‖ui‖L2

∥∥vj∥∥L2.
According to our previous remarks, the norm ofX0,b can be realized by pairing with

a function in the dual spaceX0,−b. Thus, we are led to consider the four-linear forms

M1(u, v,w, z) =
∑

max(i,j,k,l)−min(i,j,k,l)>5

∫
ui v̄jwkz̄l dx dt

and

M2(u, v,w, z) =
∑

(i,j,k): max(i,j,k,l)−min(i,j,k,l)�5

∫
ui v̄jwkz̄l dx dt.

ConsiderM1 first. Take additional decompositions, according to the operators�L. We
have

M1(u, v,w, z) =
∑

L1,L2,L3,L4�1

∑
max(i,j,k,l)−min(i,j,k,l)>5

×
∫

�L1(ui)�L2(v̄j )�L3(wk)�L4(z̄l) dx dt.

By the condition max(i, j, k, l) − min(i, j, k, l) > 5, we conclude that for at least
one of integers(i, j, k) (say i), we have|i − l|�3. Applying Cauchy–Schwartz, (11)
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and (13), yields

|M1(u, v,w, z)| �
∑

L1,L4�1

∥∥�L1(ui)�L4(zl)
∥∥
L2

∥∥vj∥∥X0,1/2+ε‖wk‖X0,1/2+ε

�
∑

L1,L4�1

L1
1/2min(L4,2l+i )1/2

2max(i,l)/2
∥∥�L1(ui)

∥∥
L2

∥∥�L4(zl)
∥∥
L2

×∥∥vj∥∥X0,1/2+ε‖wk‖X0,1/2+ε

�
∑
L4�1

min(L4,2l+i )1/2

2max(i,l)/2
∥∥�L4(zl)

∥∥
L2‖ui‖X0,1/2+ε

∥∥vj∥∥X0,1/2+ε

×‖wk‖X0,1/2+ε .

But, splitting the sum inL4�2l+i andL4 < 2l+i gives the estimate∑
L4�2l+i

min(L4,2
l+i )1/2

∥∥�L4(zl)
∥∥
L2�26εmax(i,l)‖zl‖X0,1/2−2ε ,

whereas∑
L4�2l+i

min(L4,2
l+i )1/2

∥∥�L4(zl)
∥∥
L2 � 26εmax(i,l)

∑
L4�2l+i

L
1/2−3ε
4

∥∥�L4(zl)
∥∥
L2

� 26εmax(i,l)‖zl‖X0,1/2−2ε .

Put everything together to get

|M1(u, v,w, z)|�2−l(1/2−6ε)‖ui‖X0,1/2+ε

∥∥vj∥∥X0,1/2+ε‖wk‖X0,1/2+ε‖zl‖X0,1/2−2ε ,

since l� max(i, l).
Equivalently,∥∥ui v̄jwk

∥∥
X0,−1/2+2ε�2−l(1/2−6ε)‖ui‖X0,1/2+ε

∥∥vj∥∥X0,1/2+ε‖wk‖X0,1/2+ε

as claimed.
For M2, we use Cauchy–Schwartz and (12), to estimate

|M2(u, v,w, z)| �
∥∥ul−5� ·� l+5vl−5� ·� l+5

∥∥
L2

∥∥wl−5� ·� l+5zl−5� ·� l+5
∥∥
L2

�
∑

L1,...,L4�1

(L1)
1/2
∥∥�L1ul−5� ·� l+5

∥∥
L2(L3)

1/2
∥∥�L3wl−5� ·� l+5

∥∥
L2

×(L2)
1/4
∥∥�L2vl−5� ·� l+5

∥∥
L2(L4)

1/4
∥∥�L4zl−5� ·� l+5

∥∥
L2.
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It is easy to see that

∑
L1�1

(L1)
1/2
∥∥�L1ul−5� ·� l+5

∥∥
L2�

∥∥ul−5� ·� l+5
∥∥
X0,1/2+ε

and similarly forv,w. Finally, sinceε is sufficiently small, we have

∑
L4�1

(L4)
1/4
∥∥�L4zl−5� ·� l+5

∥∥
L2�

∥∥zl−5� ·� l+5
∥∥
X0,1/2−2ε

Altogether,

|M2(u, v,w, z)| �
∥∥ul−5� ·� l+5

∥∥
X0,1/2+ε

∥∥vl−5� ·� l+5
∥∥
X0,1/2+ε

∥∥wl−5� ·� l+5
∥∥
X0,1/2+ε

× ∥∥zl−5� ·� l+5
∥∥
X0,1/2−2ε .

In terms of the norms, we have∥∥∥∥∥∥
∑

(i,j,k): max(i,j,k,l)−min(i,j,k,l)�5

uivjwk

∥∥∥∥∥∥
X0,−1/2+2ε

�
∥∥ul−5� ·� l+5

∥∥
X0,1/2+ε

∥∥vl−5� ·� l+5
∥∥
X0,1/2+ε

∥∥wl−5� ·� l+5
∥∥
X0,1/2+ε

as claimed.
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